动态金属-载体相互作用决定了铜纳米颗粒在Al2O3表面的烧结。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-08-08 DOI:10.1021/acsnano.5c04622
Jiayan Xu, Shreeja Das, Amar Deep Pathak*, Abhirup Patra, Sharan Shetty, Detlef Hohl and Roberto Car*, 
{"title":"动态金属-载体相互作用决定了铜纳米颗粒在Al2O3表面的烧结。","authors":"Jiayan Xu,&nbsp;Shreeja Das,&nbsp;Amar Deep Pathak*,&nbsp;Abhirup Patra,&nbsp;Sharan Shetty,&nbsp;Detlef Hohl and Roberto Car*,&nbsp;","doi":"10.1021/acsnano.5c04622","DOIUrl":null,"url":null,"abstract":"<p >Nanoparticle sintering remains a critical challenge in heterogeneous catalysis. In this work, we present a unified deep potential (DP) model based on the Perdew–Burke–Ernzerhof approximation of density functional theory for Cu nanoparticles on three Al<sub>2</sub>O<sub>3</sub> surfaces (γ-Al<sub>2</sub>O<sub>3</sub>(100), γ-Al<sub>2</sub>O<sub>3</sub>(110), and α-Al<sub>2</sub>O<sub>3</sub>(0001)). Using DP-accelerated simulations, we reveal that the nanoparticle size-mobility relationship strongly depends on the supporting surface. The diffusion of nanoparticles on the two γ-Al<sub>2</sub>O<sub>3</sub> surfaces is almost independent of the size of the nanoparticle, while the diffusion on α-Al<sub>2</sub>O<sub>3</sub>(0001) decreases rapidly with increasing size. Interestingly, nanoparticles with fewer than 55 atoms diffuse several times faster on α-Al<sub>2</sub>O<sub>3</sub>(0001) than on γ-Al<sub>2</sub>O<sub>3</sub>(100) at 800 K while expected to be more sluggish based on their larger binding energy at 0 K. The diffusion on α-Al<sub>2</sub>O<sub>3</sub>(0001) is facilitated by dynamic metal–support interaction (MSI), where Al atoms move out of the surface plane to optimize contact with the nanoparticle and relax back to the plane as the nanoparticle moves away. In contrast, the MSI on γ-Al<sub>2</sub>O<sub>3</sub>(100) and on γ-Al<sub>2</sub>O<sub>3</sub>(110) is dominated by more stable and directional Cu–O bonds, consistent with the limited diffusion observed on these surfaces. Our extended MD simulations provide insight into the sintering processes, showing that the dispersity of the nanoparticles strongly influences the coalescence driven by nanoparticle diffusion. We observed that the coalescence of Cu<sub>13</sub> nanoparticles on α-Al<sub>2</sub>O<sub>3</sub>(0001) can occur in a short time (10 ns) at 800 K even with an initial internanoparticle distance increased to 3 nm, while the coalescence on the two γ-Al<sub>2</sub>O<sub>3</sub> surfaces are inhibited significantly by increasing the initial internanoparticle distance. These findings demonstrate that the dynamics of the supporting surface is crucial to understanding the sintering mechanism and offer guidance for designing sinter-resistant catalysts by engineering the support morphology.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 32","pages":"29242–29254"},"PeriodicalIF":16.0000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsnano.5c04622","citationCount":"0","resultStr":"{\"title\":\"Dynamic Metal–Support Interaction Dictates Cu Nanoparticle Sintering on Al2O3 Surfaces\",\"authors\":\"Jiayan Xu,&nbsp;Shreeja Das,&nbsp;Amar Deep Pathak*,&nbsp;Abhirup Patra,&nbsp;Sharan Shetty,&nbsp;Detlef Hohl and Roberto Car*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c04622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nanoparticle sintering remains a critical challenge in heterogeneous catalysis. In this work, we present a unified deep potential (DP) model based on the Perdew–Burke–Ernzerhof approximation of density functional theory for Cu nanoparticles on three Al<sub>2</sub>O<sub>3</sub> surfaces (γ-Al<sub>2</sub>O<sub>3</sub>(100), γ-Al<sub>2</sub>O<sub>3</sub>(110), and α-Al<sub>2</sub>O<sub>3</sub>(0001)). Using DP-accelerated simulations, we reveal that the nanoparticle size-mobility relationship strongly depends on the supporting surface. The diffusion of nanoparticles on the two γ-Al<sub>2</sub>O<sub>3</sub> surfaces is almost independent of the size of the nanoparticle, while the diffusion on α-Al<sub>2</sub>O<sub>3</sub>(0001) decreases rapidly with increasing size. Interestingly, nanoparticles with fewer than 55 atoms diffuse several times faster on α-Al<sub>2</sub>O<sub>3</sub>(0001) than on γ-Al<sub>2</sub>O<sub>3</sub>(100) at 800 K while expected to be more sluggish based on their larger binding energy at 0 K. The diffusion on α-Al<sub>2</sub>O<sub>3</sub>(0001) is facilitated by dynamic metal–support interaction (MSI), where Al atoms move out of the surface plane to optimize contact with the nanoparticle and relax back to the plane as the nanoparticle moves away. In contrast, the MSI on γ-Al<sub>2</sub>O<sub>3</sub>(100) and on γ-Al<sub>2</sub>O<sub>3</sub>(110) is dominated by more stable and directional Cu–O bonds, consistent with the limited diffusion observed on these surfaces. Our extended MD simulations provide insight into the sintering processes, showing that the dispersity of the nanoparticles strongly influences the coalescence driven by nanoparticle diffusion. We observed that the coalescence of Cu<sub>13</sub> nanoparticles on α-Al<sub>2</sub>O<sub>3</sub>(0001) can occur in a short time (10 ns) at 800 K even with an initial internanoparticle distance increased to 3 nm, while the coalescence on the two γ-Al<sub>2</sub>O<sub>3</sub> surfaces are inhibited significantly by increasing the initial internanoparticle distance. These findings demonstrate that the dynamics of the supporting surface is crucial to understanding the sintering mechanism and offer guidance for designing sinter-resistant catalysts by engineering the support morphology.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 32\",\"pages\":\"29242–29254\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsnano.5c04622\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c04622\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c04622","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米颗粒烧结仍然是多相催化的一个关键挑战。在这项工作中,我们提出了一个统一的深势(DP)模型,该模型基于密度泛函理论的Perdew-Burke-Ernzerhof近似,用于三个Al2O3表面(γ-Al2O3(100), γ-Al2O3(110)和α-Al2O3(0001))上的Cu纳米颗粒。通过dp加速模拟,我们发现纳米颗粒的尺寸-迁移率关系强烈依赖于支撑表面。纳米粒子在两个γ-Al2O3表面的扩散几乎与纳米粒子的尺寸无关,而α-Al2O3(0001)表面的扩散随着尺寸的增大而迅速减小。有趣的是,在800 K时,小于55个原子的纳米颗粒在α-Al2O3(0001)上的扩散速度比在γ-Al2O3(100)上的扩散速度快几倍,而基于它们在0 K时较大的结合能,预计它们的扩散速度会更慢。α-Al2O3(0001)上的扩散是由动态金属-载体相互作用(MSI)促进的,其中Al原子移动出表面平面以优化与纳米颗粒的接触,并随着纳米颗粒的移动而放松回平面。相比之下,γ-Al2O3(100)和γ-Al2O3(110)表面上的MSI以更稳定和定向的Cu-O键为主,这与在这些表面上观察到的有限扩散一致。我们的扩展MD模拟提供了对烧结过程的深入了解,表明纳米颗粒的分散性强烈影响由纳米颗粒扩散驱动的聚结。我们观察到,在800 K下,即使初始纳米粒子间距增加到3 nm, Cu13纳米粒子在α-Al2O3(0001)表面的聚结也能在短时间内(10 ns)发生,而增加初始纳米粒子间距明显抑制了两个γ-Al2O3表面的聚结。这些发现表明,支撑表面的动力学对理解烧结机理至关重要,并为通过工程设计支撑表面的形貌来设计抗烧结催化剂提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Metal–Support Interaction Dictates Cu Nanoparticle Sintering on Al2O3 Surfaces

Nanoparticle sintering remains a critical challenge in heterogeneous catalysis. In this work, we present a unified deep potential (DP) model based on the Perdew–Burke–Ernzerhof approximation of density functional theory for Cu nanoparticles on three Al2O3 surfaces (γ-Al2O3(100), γ-Al2O3(110), and α-Al2O3(0001)). Using DP-accelerated simulations, we reveal that the nanoparticle size-mobility relationship strongly depends on the supporting surface. The diffusion of nanoparticles on the two γ-Al2O3 surfaces is almost independent of the size of the nanoparticle, while the diffusion on α-Al2O3(0001) decreases rapidly with increasing size. Interestingly, nanoparticles with fewer than 55 atoms diffuse several times faster on α-Al2O3(0001) than on γ-Al2O3(100) at 800 K while expected to be more sluggish based on their larger binding energy at 0 K. The diffusion on α-Al2O3(0001) is facilitated by dynamic metal–support interaction (MSI), where Al atoms move out of the surface plane to optimize contact with the nanoparticle and relax back to the plane as the nanoparticle moves away. In contrast, the MSI on γ-Al2O3(100) and on γ-Al2O3(110) is dominated by more stable and directional Cu–O bonds, consistent with the limited diffusion observed on these surfaces. Our extended MD simulations provide insight into the sintering processes, showing that the dispersity of the nanoparticles strongly influences the coalescence driven by nanoparticle diffusion. We observed that the coalescence of Cu13 nanoparticles on α-Al2O3(0001) can occur in a short time (10 ns) at 800 K even with an initial internanoparticle distance increased to 3 nm, while the coalescence on the two γ-Al2O3 surfaces are inhibited significantly by increasing the initial internanoparticle distance. These findings demonstrate that the dynamics of the supporting surface is crucial to understanding the sintering mechanism and offer guidance for designing sinter-resistant catalysts by engineering the support morphology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信