结合电化学性质分析和机器学习模型的冰糖精确分类方法

IF 5.6 3区 材料科学 Q1 ELECTROCHEMISTRY
Dianchen Dai , Zhenjing Su , Runhao Zhu , Jianyu Lu , Ying Liao , Yanhong Li , Weixiang Zhou , Yufeng Zhang , Hong Hu , Yuqi Xiao , Ninghao Wang , Wenhui Han , Wenxiong Zhong , Xinyi Li , Guohua Hui
{"title":"结合电化学性质分析和机器学习模型的冰糖精确分类方法","authors":"Dianchen Dai ,&nbsp;Zhenjing Su ,&nbsp;Runhao Zhu ,&nbsp;Jianyu Lu ,&nbsp;Ying Liao ,&nbsp;Yanhong Li ,&nbsp;Weixiang Zhou ,&nbsp;Yufeng Zhang ,&nbsp;Hong Hu ,&nbsp;Yuqi Xiao ,&nbsp;Ninghao Wang ,&nbsp;Wenhui Han ,&nbsp;Wenxiong Zhong ,&nbsp;Xinyi Li ,&nbsp;Guohua Hui","doi":"10.1016/j.electacta.2025.147116","DOIUrl":null,"url":null,"abstract":"<div><div>Despite advances in production, current rock sugar grading methods fail to capture subtle quality differences across product types. In this study, a precise method for rock sugar classification was developed by integrating machine learning with electrochemical characterization. Classification was based on correlations between physical attributes (color, opacity, smoothness, and sweetness) and electrochemical signals. Data were collected using a three-electrode setup with a copper film working electrode, platinum counter electrode, and saturated calomel electrode (SCE) reference. Electrochemical techniques employed were electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (i-t). A boosted support vector machine (SVM) ensemble achieved 96.0 % classification accuracy across 10 rock sugar types, while K-means clustering grouped them into 3 categories. Combining physical and electrochemical parameters significantly enhanced accuracy and reliability. The proposed method offers a robust solution for quality assessment, supporting improved control and automated grading.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"539 ","pages":"Article 147116"},"PeriodicalIF":5.6000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rock sugar precise classification method by combining electrochemical property analysis and machine learning model\",\"authors\":\"Dianchen Dai ,&nbsp;Zhenjing Su ,&nbsp;Runhao Zhu ,&nbsp;Jianyu Lu ,&nbsp;Ying Liao ,&nbsp;Yanhong Li ,&nbsp;Weixiang Zhou ,&nbsp;Yufeng Zhang ,&nbsp;Hong Hu ,&nbsp;Yuqi Xiao ,&nbsp;Ninghao Wang ,&nbsp;Wenhui Han ,&nbsp;Wenxiong Zhong ,&nbsp;Xinyi Li ,&nbsp;Guohua Hui\",\"doi\":\"10.1016/j.electacta.2025.147116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite advances in production, current rock sugar grading methods fail to capture subtle quality differences across product types. In this study, a precise method for rock sugar classification was developed by integrating machine learning with electrochemical characterization. Classification was based on correlations between physical attributes (color, opacity, smoothness, and sweetness) and electrochemical signals. Data were collected using a three-electrode setup with a copper film working electrode, platinum counter electrode, and saturated calomel electrode (SCE) reference. Electrochemical techniques employed were electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (i-t). A boosted support vector machine (SVM) ensemble achieved 96.0 % classification accuracy across 10 rock sugar types, while K-means clustering grouped them into 3 categories. Combining physical and electrochemical parameters significantly enhanced accuracy and reliability. The proposed method offers a robust solution for quality assessment, supporting improved control and automated grading.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"539 \",\"pages\":\"Article 147116\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468625014756\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625014756","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

尽管在生产方面取得了进步,但目前的冰糖分级方法无法捕捉到不同产品类型之间细微的质量差异。本研究将机器学习与电化学表征相结合,开发了一种精确的岩糖分类方法。分类是基于物理属性(颜色、不透明度、平滑度和甜度)和电化学信号之间的相关性。数据收集使用三电极设置,铜膜工作电极,铂对电极和饱和甘汞电极(SCE)参比。电化学技术包括电化学阻抗谱(EIS)、循环伏安法(CV)、差分脉冲伏安法(DPV)和计时电流法(i-t)。增强的支持向量机(SVM)集成在10种冰糖类型中实现了96.0%的分类准确率,而K-means聚类将它们分为3类。结合物理和电化学参数,大大提高了准确性和可靠性。所提出的方法为质量评估提供了一个强大的解决方案,支持改进的控制和自动分级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rock sugar precise classification method by combining electrochemical property analysis and machine learning model

Rock sugar precise classification method by combining electrochemical property analysis and machine learning model

Rock sugar precise classification method by combining electrochemical property analysis and machine learning model
Despite advances in production, current rock sugar grading methods fail to capture subtle quality differences across product types. In this study, a precise method for rock sugar classification was developed by integrating machine learning with electrochemical characterization. Classification was based on correlations between physical attributes (color, opacity, smoothness, and sweetness) and electrochemical signals. Data were collected using a three-electrode setup with a copper film working electrode, platinum counter electrode, and saturated calomel electrode (SCE) reference. Electrochemical techniques employed were electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (i-t). A boosted support vector machine (SVM) ensemble achieved 96.0 % classification accuracy across 10 rock sugar types, while K-means clustering grouped them into 3 categories. Combining physical and electrochemical parameters significantly enhanced accuracy and reliability. The proposed method offers a robust solution for quality assessment, supporting improved control and automated grading.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信