Xuanyu Shi, Wenjing Zhao, Ting Chen, Chao Yang, Jian Du
{"title":"证据三角器:使用大型语言模型在研究设计中提取和综合因果证据","authors":"Xuanyu Shi, Wenjing Zhao, Ting Chen, Chao Yang, Jian Du","doi":"10.1038/s41467-025-62783-x","DOIUrl":null,"url":null,"abstract":"<p>Health strategies increasingly emphasize both behavioural and biomedical interventions, yet the complex and often contradictory guidance on diet, behavior, and health outcomes complicates evidence-based decision-making. Evidence triangulation across diverse study designs is essential for balancing biases and establishing causality, but scalable, automated methods for achieving this are lacking. In this study, we assess the performance of large language models in extracting both ontological and methodological information from scientific literature to automate evidence triangulation. A two-step extraction approach—focusing on exposure-outcome concepts first, followed by relation extraction—outperforms a one-step method, particularly in identifying the direction of effect (F1 = 0.86) and statistical significance (F1 = 0.96). Using salt intake and blood pressure as a case study, we calculate the Convergency of Evidence and Level of Convergency, finding a strong excitatory effect of salt on blood pressure (942 studies), and weak excitatory effect on cardiovascular diseases and deaths (124 studies). This approach complements traditional meta-analyses by integrating evidence across study designs, and enabling rapid, dynamic assessment of scientific controversies.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"173 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence triangulator: using large language models to extract and synthesize causal evidence across study designs\",\"authors\":\"Xuanyu Shi, Wenjing Zhao, Ting Chen, Chao Yang, Jian Du\",\"doi\":\"10.1038/s41467-025-62783-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Health strategies increasingly emphasize both behavioural and biomedical interventions, yet the complex and often contradictory guidance on diet, behavior, and health outcomes complicates evidence-based decision-making. Evidence triangulation across diverse study designs is essential for balancing biases and establishing causality, but scalable, automated methods for achieving this are lacking. In this study, we assess the performance of large language models in extracting both ontological and methodological information from scientific literature to automate evidence triangulation. A two-step extraction approach—focusing on exposure-outcome concepts first, followed by relation extraction—outperforms a one-step method, particularly in identifying the direction of effect (F1 = 0.86) and statistical significance (F1 = 0.96). Using salt intake and blood pressure as a case study, we calculate the Convergency of Evidence and Level of Convergency, finding a strong excitatory effect of salt on blood pressure (942 studies), and weak excitatory effect on cardiovascular diseases and deaths (124 studies). This approach complements traditional meta-analyses by integrating evidence across study designs, and enabling rapid, dynamic assessment of scientific controversies.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"173 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62783-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62783-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Evidence triangulator: using large language models to extract and synthesize causal evidence across study designs
Health strategies increasingly emphasize both behavioural and biomedical interventions, yet the complex and often contradictory guidance on diet, behavior, and health outcomes complicates evidence-based decision-making. Evidence triangulation across diverse study designs is essential for balancing biases and establishing causality, but scalable, automated methods for achieving this are lacking. In this study, we assess the performance of large language models in extracting both ontological and methodological information from scientific literature to automate evidence triangulation. A two-step extraction approach—focusing on exposure-outcome concepts first, followed by relation extraction—outperforms a one-step method, particularly in identifying the direction of effect (F1 = 0.86) and statistical significance (F1 = 0.96). Using salt intake and blood pressure as a case study, we calculate the Convergency of Evidence and Level of Convergency, finding a strong excitatory effect of salt on blood pressure (942 studies), and weak excitatory effect on cardiovascular diseases and deaths (124 studies). This approach complements traditional meta-analyses by integrating evidence across study designs, and enabling rapid, dynamic assessment of scientific controversies.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.