帕金森病患者局部场电位的最佳脑深部刺激接触在线预测。

IF 8.2 1区 医学 Q1 NEUROSCIENCES
Marjolein Muller,Stefano Scafa,Ibrahem Hanafi,Camille Varescon,Chiara Palmisano,Saskia van der Gaag,Rodi Zutt,Niels A van der Gaag,Carel F E Hoffmann,Jocelyne Bloch,Mayte Castro Jiménez,Julien F Bally,Philipp Capetian,Ioannis U Isaias,Eduardo M Moraud,M Fiorella Contarino
{"title":"帕金森病患者局部场电位的最佳脑深部刺激接触在线预测。","authors":"Marjolein Muller,Stefano Scafa,Ibrahem Hanafi,Camille Varescon,Chiara Palmisano,Saskia van der Gaag,Rodi Zutt,Niels A van der Gaag,Carel F E Hoffmann,Jocelyne Bloch,Mayte Castro Jiménez,Julien F Bally,Philipp Capetian,Ioannis U Isaias,Eduardo M Moraud,M Fiorella Contarino","doi":"10.1038/s41531-025-01092-y","DOIUrl":null,"url":null,"abstract":"Selecting optimal contacts for chronic deep-brain stimulation (DBS) requires a monopolar review, involving time-consuming manual testing by trained personnel, often causing patient discomfort. Neural biomarkers, such as local field potentials (LFP), could streamline this process. This study aimed to validate LFP recordings from chronically implanted neurostimulators for guiding clinical contact-level selection. We retrospectively analysed bipolar LFP recordings from Parkinson's disease patients across three centres (Netherlands: 68, Switzerland: 21, Germany: 32). Using beta-band power measures (13-35 Hz), we ranked channels based on clinical contact-level choices and developed two prediction algorithms: (i) a \"decision tree\" method for in-clinic use and (ii) a \"pattern based\" method for offline validation. The \"decision tree\" method achieved accuracies of 86.5% (NL), 86.7% (CH), and 75.0% (DE) for predicting the top two contact-levels. Both methods outperformed an existing algorithm. These findings suggest LFP-based approaches can enhance DBS programming efficiency, potentially reducing patient burden and clinical workload.","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"12 1","pages":"234"},"PeriodicalIF":8.2000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online prediction of optimal deep brain stimulation contacts from local field potentials in Parkinson's disease.\",\"authors\":\"Marjolein Muller,Stefano Scafa,Ibrahem Hanafi,Camille Varescon,Chiara Palmisano,Saskia van der Gaag,Rodi Zutt,Niels A van der Gaag,Carel F E Hoffmann,Jocelyne Bloch,Mayte Castro Jiménez,Julien F Bally,Philipp Capetian,Ioannis U Isaias,Eduardo M Moraud,M Fiorella Contarino\",\"doi\":\"10.1038/s41531-025-01092-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selecting optimal contacts for chronic deep-brain stimulation (DBS) requires a monopolar review, involving time-consuming manual testing by trained personnel, often causing patient discomfort. Neural biomarkers, such as local field potentials (LFP), could streamline this process. This study aimed to validate LFP recordings from chronically implanted neurostimulators for guiding clinical contact-level selection. We retrospectively analysed bipolar LFP recordings from Parkinson's disease patients across three centres (Netherlands: 68, Switzerland: 21, Germany: 32). Using beta-band power measures (13-35 Hz), we ranked channels based on clinical contact-level choices and developed two prediction algorithms: (i) a \\\"decision tree\\\" method for in-clinic use and (ii) a \\\"pattern based\\\" method for offline validation. The \\\"decision tree\\\" method achieved accuracies of 86.5% (NL), 86.7% (CH), and 75.0% (DE) for predicting the top two contact-levels. Both methods outperformed an existing algorithm. These findings suggest LFP-based approaches can enhance DBS programming efficiency, potentially reducing patient burden and clinical workload.\",\"PeriodicalId\":19706,\"journal\":{\"name\":\"NPJ Parkinson's Disease\",\"volume\":\"12 1\",\"pages\":\"234\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Parkinson's Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41531-025-01092-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-025-01092-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

为慢性脑深部刺激(DBS)选择最佳接触者需要进行单侧审查,这需要经过训练的人员进行耗时的人工测试,通常会导致患者不适。神经生物标志物,如局部场电位(LFP),可以简化这一过程。本研究旨在验证长期植入神经刺激器的LFP记录,以指导临床接触水平的选择。我们回顾性分析了三个中心(荷兰:68例,瑞士:21例,德国:32例)帕金森病患者的双相LFP记录。使用β波段功率测量(13-35 Hz),我们根据临床接触水平的选择对渠道进行排名,并开发了两种预测算法:(i)用于临床使用的“决策树”方法和(ii)用于离线验证的“基于模式”方法。“决策树”方法预测前两个接触水平的准确率分别为86.5% (NL)、86.7% (CH)和75.0% (DE)。这两种方法都优于现有的算法。这些发现表明,基于lfp的方法可以提高DBS规划效率,潜在地减轻患者负担和临床工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online prediction of optimal deep brain stimulation contacts from local field potentials in Parkinson's disease.
Selecting optimal contacts for chronic deep-brain stimulation (DBS) requires a monopolar review, involving time-consuming manual testing by trained personnel, often causing patient discomfort. Neural biomarkers, such as local field potentials (LFP), could streamline this process. This study aimed to validate LFP recordings from chronically implanted neurostimulators for guiding clinical contact-level selection. We retrospectively analysed bipolar LFP recordings from Parkinson's disease patients across three centres (Netherlands: 68, Switzerland: 21, Germany: 32). Using beta-band power measures (13-35 Hz), we ranked channels based on clinical contact-level choices and developed two prediction algorithms: (i) a "decision tree" method for in-clinic use and (ii) a "pattern based" method for offline validation. The "decision tree" method achieved accuracies of 86.5% (NL), 86.7% (CH), and 75.0% (DE) for predicting the top two contact-levels. Both methods outperformed an existing algorithm. These findings suggest LFP-based approaches can enhance DBS programming efficiency, potentially reducing patient burden and clinical workload.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NPJ Parkinson's Disease
NPJ Parkinson's Disease Medicine-Neurology (clinical)
CiteScore
9.80
自引率
5.70%
发文量
156
审稿时长
11 weeks
期刊介绍: npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信