串联催化剂在工业相关电流下优良H2O2电合成的潜力。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-08-08 DOI:10.1021/acsnano.5c08394
Hongxiang Li, Kun Zhao*, Saixi Chen, Xinchen Zhang, Xueyang Zhao, Yizhao Li, Chenghua Sun, Shuai Wu, Hongtao Yu and Junfeng Niu*, 
{"title":"串联催化剂在工业相关电流下优良H2O2电合成的潜力。","authors":"Hongxiang Li,&nbsp;Kun Zhao*,&nbsp;Saixi Chen,&nbsp;Xinchen Zhang,&nbsp;Xueyang Zhao,&nbsp;Yizhao Li,&nbsp;Chenghua Sun,&nbsp;Shuai Wu,&nbsp;Hongtao Yu and Junfeng Niu*,&nbsp;","doi":"10.1021/acsnano.5c08394","DOIUrl":null,"url":null,"abstract":"<p >Direct electrosynthesis of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) serves as an innovative and less-energy-demanding alternative to the conventional anthraquinone process. As the process involves active hydrogen (*H) production and hydrogenation of oxygen-containing intermediates, catalysts containing dual functional sites for *H and *OOH intermediate generation might boost the H<sub>2</sub>O<sub>2</sub> electrosynthesis activity. Here, we report a tandem catalyst with a uniform distribution of single-atom Al sites around Al<sub>2</sub>O<sub>3</sub> species, constituting the adjacent catalytic centers (Al<sub>2</sub>O<sub>3</sub>/Al<sub>1</sub>–O-C). The Al<sub>2</sub>O<sub>3</sub>/Al<sub>1</sub>–O-C catalysts exhibit high H<sub>2</sub>O<sub>2</sub> selectivity in alkaline conditions and achieve a yield rate of 39.4 mol g<sub>cat.</sub><sup>–1</sup> h<sup>–1</sup> with a favorable stability of over 100 h in the flow cell. The direct output concentration of H<sub>2</sub>O<sub>2</sub> can reach 1659.2 mmol L<sup>–1</sup> (5.61 wt %) at 400 mA cm<sup>–2</sup>. The in situ measurements and simulated calculations reveal that the Al<sub>2</sub>O<sub>3</sub> sites catalyze the Volmer step in water decomposition to generate *H, which significantly promotes the *OOH generation from the reduction of *O<sub>2</sub> on single-atom Al sites, thus promoting H<sub>2</sub>O<sub>2</sub> electrosynthesis at high current densities. This tandem design enables industrially relevant H<sub>2</sub>O<sub>2</sub> electrosynthesis, demonstrating the potential for practical applications in the future.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 32","pages":"29566–29576"},"PeriodicalIF":16.0000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential of Tandem Catalysts for Excellent H2O2 Electrosynthesis at Industrial-Relevant Current\",\"authors\":\"Hongxiang Li,&nbsp;Kun Zhao*,&nbsp;Saixi Chen,&nbsp;Xinchen Zhang,&nbsp;Xueyang Zhao,&nbsp;Yizhao Li,&nbsp;Chenghua Sun,&nbsp;Shuai Wu,&nbsp;Hongtao Yu and Junfeng Niu*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c08394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Direct electrosynthesis of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) serves as an innovative and less-energy-demanding alternative to the conventional anthraquinone process. As the process involves active hydrogen (*H) production and hydrogenation of oxygen-containing intermediates, catalysts containing dual functional sites for *H and *OOH intermediate generation might boost the H<sub>2</sub>O<sub>2</sub> electrosynthesis activity. Here, we report a tandem catalyst with a uniform distribution of single-atom Al sites around Al<sub>2</sub>O<sub>3</sub> species, constituting the adjacent catalytic centers (Al<sub>2</sub>O<sub>3</sub>/Al<sub>1</sub>–O-C). The Al<sub>2</sub>O<sub>3</sub>/Al<sub>1</sub>–O-C catalysts exhibit high H<sub>2</sub>O<sub>2</sub> selectivity in alkaline conditions and achieve a yield rate of 39.4 mol g<sub>cat.</sub><sup>–1</sup> h<sup>–1</sup> with a favorable stability of over 100 h in the flow cell. The direct output concentration of H<sub>2</sub>O<sub>2</sub> can reach 1659.2 mmol L<sup>–1</sup> (5.61 wt %) at 400 mA cm<sup>–2</sup>. The in situ measurements and simulated calculations reveal that the Al<sub>2</sub>O<sub>3</sub> sites catalyze the Volmer step in water decomposition to generate *H, which significantly promotes the *OOH generation from the reduction of *O<sub>2</sub> on single-atom Al sites, thus promoting H<sub>2</sub>O<sub>2</sub> electrosynthesis at high current densities. This tandem design enables industrially relevant H<sub>2</sub>O<sub>2</sub> electrosynthesis, demonstrating the potential for practical applications in the future.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 32\",\"pages\":\"29566–29576\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c08394\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c08394","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

直接电合成过氧化氢(H2O2)是一种创新的、低能耗的替代传统的蒽醌工艺。由于该过程涉及活性氢(*H)的生成和含氧中间体的加氢,因此含有*H和*OOH中间体生成双功能位点的催化剂可能会提高H2O2电合成活性。在这里,我们报道了一种串联催化剂,其单原子Al位点均匀分布在Al2O3物质周围,构成相邻的催化中心(Al2O3/Al1-O-C)。Al2O3/Al1-O-C催化剂在碱性条件下表现出较高的H2O2选择性,产率达到39.4 mol gcat。-1 h-1,在流动池中具有超过100 h的良好稳定性。在400 mA cm-2下,H2O2的直接输出浓度可达1659.2 mmol L-1 (5.61 wt %)。原位测量和模拟计算结果表明,Al2O3位点催化水分解的Volmer步骤生成*H,这显著促进了单原子Al位点上*O2还原生成*OOH,从而促进了高电流密度下H2O2的电合成。这种串联设计实现了工业上相关的H2O2电合成,展示了未来实际应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Potential of Tandem Catalysts for Excellent H2O2 Electrosynthesis at Industrial-Relevant Current

Potential of Tandem Catalysts for Excellent H2O2 Electrosynthesis at Industrial-Relevant Current

Direct electrosynthesis of hydrogen peroxide (H2O2) serves as an innovative and less-energy-demanding alternative to the conventional anthraquinone process. As the process involves active hydrogen (*H) production and hydrogenation of oxygen-containing intermediates, catalysts containing dual functional sites for *H and *OOH intermediate generation might boost the H2O2 electrosynthesis activity. Here, we report a tandem catalyst with a uniform distribution of single-atom Al sites around Al2O3 species, constituting the adjacent catalytic centers (Al2O3/Al1–O-C). The Al2O3/Al1–O-C catalysts exhibit high H2O2 selectivity in alkaline conditions and achieve a yield rate of 39.4 mol gcat.–1 h–1 with a favorable stability of over 100 h in the flow cell. The direct output concentration of H2O2 can reach 1659.2 mmol L–1 (5.61 wt %) at 400 mA cm–2. The in situ measurements and simulated calculations reveal that the Al2O3 sites catalyze the Volmer step in water decomposition to generate *H, which significantly promotes the *OOH generation from the reduction of *O2 on single-atom Al sites, thus promoting H2O2 electrosynthesis at high current densities. This tandem design enables industrially relevant H2O2 electrosynthesis, demonstrating the potential for practical applications in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信