难辨梭菌个体化定殖风险预测及益生菌治疗评估。

IF 7.7
Cell systems Pub Date : 2025-08-20 Epub Date: 2025-08-06 DOI:10.1016/j.cels.2025.101367
Alex V Carr, Nitin S Baliga, Christian Diener, Sean M Gibbons
{"title":"难辨梭菌个体化定殖风险预测及益生菌治疗评估。","authors":"Alex V Carr, Nitin S Baliga, Christian Diener, Sean M Gibbons","doi":"10.1016/j.cels.2025.101367","DOIUrl":null,"url":null,"abstract":"<p><p>Clostridioides difficile (C. difficile) colonizes up to 40% of community-dwelling adults without causing disease but can eventually lead to infection (C. difficile infection [CDI]). There has been a lack of focus on how to prevent colonization and facilitate the successful clearance of C. difficile prior to the emergence of CDI. We show that microbial community-scale metabolic models (MCMMs) accurately predict C. difficile colonization susceptibility in vitro and in vivo, offering mechanistic insights into microbiota-specific interactions involving metabolites like succinate, trehalose, and ornithine. MCMMs reveal distinct C. difficile metabolic niches-two growth-associated and one non-growth-associated-observed across 15,204 individuals from five cohorts. We further demonstrate that MCMMs can predict personalized C. difficile growth suppression by a probiotic cocktail designed to replace fecal microbiota transplants (FMTs) for the treatment of recurrent CDI, and we identify new probiotic targets for future validation. MCMMs represent a powerful framework for predicting pathogen colonization and assessing probiotic efficacy across diverse microbiota contexts. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101367"},"PeriodicalIF":7.7000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12497417/pdf/","citationCount":"0","resultStr":"{\"title\":\"Personalized Clostridioides difficile colonization risk prediction and probiotic therapy assessment in the human gut.\",\"authors\":\"Alex V Carr, Nitin S Baliga, Christian Diener, Sean M Gibbons\",\"doi\":\"10.1016/j.cels.2025.101367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clostridioides difficile (C. difficile) colonizes up to 40% of community-dwelling adults without causing disease but can eventually lead to infection (C. difficile infection [CDI]). There has been a lack of focus on how to prevent colonization and facilitate the successful clearance of C. difficile prior to the emergence of CDI. We show that microbial community-scale metabolic models (MCMMs) accurately predict C. difficile colonization susceptibility in vitro and in vivo, offering mechanistic insights into microbiota-specific interactions involving metabolites like succinate, trehalose, and ornithine. MCMMs reveal distinct C. difficile metabolic niches-two growth-associated and one non-growth-associated-observed across 15,204 individuals from five cohorts. We further demonstrate that MCMMs can predict personalized C. difficile growth suppression by a probiotic cocktail designed to replace fecal microbiota transplants (FMTs) for the treatment of recurrent CDI, and we identify new probiotic targets for future validation. MCMMs represent a powerful framework for predicting pathogen colonization and assessing probiotic efficacy across diverse microbiota contexts. A record of this paper's transparent peer review process is included in the supplemental information.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\" \",\"pages\":\"101367\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12497417/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2025.101367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

艰难梭菌(C. difficile)在40%的社区成年人中定植,但不会引起疾病,但最终会导致感染(C. difficile infection [CDI])。在CDI出现之前,缺乏对如何防止定植和促进艰难梭菌成功清除的关注。我们发现微生物群落规模代谢模型(mcmm)在体外和体内都能准确预测艰难梭菌的定植敏感性,为涉及琥珀酸盐、海藻糖和鸟氨酸等代谢物的微生物群特异性相互作用提供了机制见解。mcmm显示了不同的艰难梭菌代谢生态位-两个生长相关和一个非生长相关-在来自五个队列的15,204个个体中观察到。我们进一步证明,mcmm可以通过一种益生菌鸡尾酒来预测个性化的艰难梭菌生长抑制,这种益生菌鸡尾酒被设计用来取代粪便微生物群移植(FMTs)来治疗复发性CDI,我们确定了新的益生菌靶点,以供未来验证。mcmm代表了预测病原体定植和评估不同微生物群背景下益生菌功效的强大框架。本文的透明同行评议过程记录包含在补充信息中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Personalized Clostridioides difficile colonization risk prediction and probiotic therapy assessment in the human gut.

Clostridioides difficile (C. difficile) colonizes up to 40% of community-dwelling adults without causing disease but can eventually lead to infection (C. difficile infection [CDI]). There has been a lack of focus on how to prevent colonization and facilitate the successful clearance of C. difficile prior to the emergence of CDI. We show that microbial community-scale metabolic models (MCMMs) accurately predict C. difficile colonization susceptibility in vitro and in vivo, offering mechanistic insights into microbiota-specific interactions involving metabolites like succinate, trehalose, and ornithine. MCMMs reveal distinct C. difficile metabolic niches-two growth-associated and one non-growth-associated-observed across 15,204 individuals from five cohorts. We further demonstrate that MCMMs can predict personalized C. difficile growth suppression by a probiotic cocktail designed to replace fecal microbiota transplants (FMTs) for the treatment of recurrent CDI, and we identify new probiotic targets for future validation. MCMMs represent a powerful framework for predicting pathogen colonization and assessing probiotic efficacy across diverse microbiota contexts. A record of this paper's transparent peer review process is included in the supplemental information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信