肿瘤葡萄糖重编程抑制铜增生:综述。

0 MEDICINE, RESEARCH & EXPERIMENTAL
Xiao-Hang Song, Yi-Hang Ding, Jing-Song Chen
{"title":"肿瘤葡萄糖重编程抑制铜增生:综述。","authors":"Xiao-Hang Song, Yi-Hang Ding, Jing-Song Chen","doi":"10.17305/bb.2025.12751","DOIUrl":null,"url":null,"abstract":"<p><p>Cuproptosis is a copper-dependent form of regulated cell death that begins when ferredoxin 1 (FDX1) reduces Cu²⁺ to Cu¹⁺, allowing the ion to bind lipoylated enzymes of the tricarboxylic-acid (TCA) cycle, drive protein aggregation, dismantle iron-sulphur clusters and trigger fatal proteotoxic stress. Most tumours, despite accumulating copper, evade this fate through glucose-metabolic rewiring. First, oncogenic stabilisation of hypoxia-inducible factor-1 alpha (HIF-1α) and MYC increases pyruvate dehydrogenase kinase (PDK) activity, which phosphorylates and inactivates the pyruvate dehydrogenase complex (PDC), shrinking the lipoylated target pool in mitochondria and cutting the feed into the TCA cycle. Second, glycolytic signalling suppresses cuproptosis-promoting genes such as FDX1 and dihydrolipoamide S-acetyltransferase while inducing the negative regulator glutaminase (GLS), further lowering copper sensitivity. Third, diversion of glycolytic intermediates into the pentose-phosphate pathway (PPP) supplies abundant nicotinamide adenine dinucleotide phosphate (NADPH), whereas enhanced glutamine catabolism furnishes glutamate; together these fuels expand reduced glutathione (GSH) and metallothionein (MT) pools that chelate Cu¹⁺ and quench reactive oxygen species exactly where cuproptosis is executed. Consequently, glycolysis-dependent cancer cells are far less sensitive to copper-ionophore drugs such as elesclomol or disulfiram than respiration-dependent counterparts, and clinical datasets consistently link high PDK and low PDC-subunit expression with poor prognosis. These insights highlight rational combination strategies: re-activating the TCA cycle with PDK inhibitors, draining PPP- or GLS-driven NADPH/GSH supply, and concurrently delivering copper ionophores could reopen the cuproptotic trap in tumours. Validating such approaches in vivo, charting upstream regulators of FDX1 and mapping crosstalk between cuproptosis and other lethal programmes remain key steps toward exploiting this copper-centred vulnerability in cancer therapy.</p>","PeriodicalId":72398,"journal":{"name":"Biomolecules & biomedicine","volume":" ","pages":"251-261"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505534/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tumor glucose reprogramming suppresses cuproptosis: A review.\",\"authors\":\"Xiao-Hang Song, Yi-Hang Ding, Jing-Song Chen\",\"doi\":\"10.17305/bb.2025.12751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cuproptosis is a copper-dependent form of regulated cell death that begins when ferredoxin 1 (FDX1) reduces Cu²⁺ to Cu¹⁺, allowing the ion to bind lipoylated enzymes of the tricarboxylic-acid (TCA) cycle, drive protein aggregation, dismantle iron-sulphur clusters and trigger fatal proteotoxic stress. Most tumours, despite accumulating copper, evade this fate through glucose-metabolic rewiring. First, oncogenic stabilisation of hypoxia-inducible factor-1 alpha (HIF-1α) and MYC increases pyruvate dehydrogenase kinase (PDK) activity, which phosphorylates and inactivates the pyruvate dehydrogenase complex (PDC), shrinking the lipoylated target pool in mitochondria and cutting the feed into the TCA cycle. Second, glycolytic signalling suppresses cuproptosis-promoting genes such as FDX1 and dihydrolipoamide S-acetyltransferase while inducing the negative regulator glutaminase (GLS), further lowering copper sensitivity. Third, diversion of glycolytic intermediates into the pentose-phosphate pathway (PPP) supplies abundant nicotinamide adenine dinucleotide phosphate (NADPH), whereas enhanced glutamine catabolism furnishes glutamate; together these fuels expand reduced glutathione (GSH) and metallothionein (MT) pools that chelate Cu¹⁺ and quench reactive oxygen species exactly where cuproptosis is executed. Consequently, glycolysis-dependent cancer cells are far less sensitive to copper-ionophore drugs such as elesclomol or disulfiram than respiration-dependent counterparts, and clinical datasets consistently link high PDK and low PDC-subunit expression with poor prognosis. These insights highlight rational combination strategies: re-activating the TCA cycle with PDK inhibitors, draining PPP- or GLS-driven NADPH/GSH supply, and concurrently delivering copper ionophores could reopen the cuproptotic trap in tumours. Validating such approaches in vivo, charting upstream regulators of FDX1 and mapping crosstalk between cuproptosis and other lethal programmes remain key steps toward exploiting this copper-centred vulnerability in cancer therapy.</p>\",\"PeriodicalId\":72398,\"journal\":{\"name\":\"Biomolecules & biomedicine\",\"volume\":\" \",\"pages\":\"251-261\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505534/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules & biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17305/bb.2025.12751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17305/bb.2025.12751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

Cuproptosis是一种依赖铜的受调节细胞死亡形式,当铁氧还蛋白 1 (FDX1)将Cu 2 +还原为Cu 1 +时开始,允许离子结合三羧酸(TCA)循环的脂酰化酶,驱动蛋白质聚集,拆除铁硫簇并触发致命的蛋白质毒性应激。大多数肿瘤,尽管积累了铜,但通过葡萄糖代谢重新布线逃避了这种命运。首先,低氧诱导因子-1 α (HIF-1α)和MYC的致癌稳定性增加了丙酮酸脱氢酶激酶 (PDK)的活性,从而使丙酮酸脱氢酶复合物 (PDC)磷酸化并失活,缩小了线粒体中脂酰化的靶池,切断了TCA循环的饲料。其次,糖酵解信号传导抑制促进铜还原的基因,如FDX1和二氢脂酰胺s-乙酰转移酶,同时诱导负调节因子谷氨酰胺酶 (GLS),进一步降低铜敏感性。第三,糖酵解中间体转向戊糖-磷酸途径 (PPP)提供丰富的烟酰胺腺嘌呤二核苷酸磷酸 (NADPH),而谷氨酰胺分解代谢增强提供谷氨酸;这些燃料一起扩大还原性谷胱甘肽 (GSH)和金属硫蛋白 (MT)池,这些池螯合Cu +并在铜还原发生的地方淬灭活性氧。因此,糖酵解依赖的癌细胞对铜离子载体药物(如埃来氯莫尔或双硫仑)的敏感性远低于呼吸依赖的癌细胞,并且临床数据集一致将高PDK和低pdc亚基表达与不良预后联系起来。这些发现强调了合理的组合策略:用PDK抑制剂重新激活TCA循环,排出PPP或gls驱动的NADPH/GSH供应,同时递送铜离子载体可以重新打开肿瘤中的铜还原陷阱。在体内验证这些方法,绘制FDX1上游调控因子的图表,绘制铜沉积与其他致死程序之间的串扰图,仍然是利用这种以铜为中心的脆弱性进行癌症治疗的关键步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tumor glucose reprogramming suppresses cuproptosis: A review.

Tumor glucose reprogramming suppresses cuproptosis: A review.

Tumor glucose reprogramming suppresses cuproptosis: A review.

Tumor glucose reprogramming suppresses cuproptosis: A review.

Cuproptosis is a copper-dependent form of regulated cell death that begins when ferredoxin 1 (FDX1) reduces Cu²⁺ to Cu¹⁺, allowing the ion to bind lipoylated enzymes of the tricarboxylic-acid (TCA) cycle, drive protein aggregation, dismantle iron-sulphur clusters and trigger fatal proteotoxic stress. Most tumours, despite accumulating copper, evade this fate through glucose-metabolic rewiring. First, oncogenic stabilisation of hypoxia-inducible factor-1 alpha (HIF-1α) and MYC increases pyruvate dehydrogenase kinase (PDK) activity, which phosphorylates and inactivates the pyruvate dehydrogenase complex (PDC), shrinking the lipoylated target pool in mitochondria and cutting the feed into the TCA cycle. Second, glycolytic signalling suppresses cuproptosis-promoting genes such as FDX1 and dihydrolipoamide S-acetyltransferase while inducing the negative regulator glutaminase (GLS), further lowering copper sensitivity. Third, diversion of glycolytic intermediates into the pentose-phosphate pathway (PPP) supplies abundant nicotinamide adenine dinucleotide phosphate (NADPH), whereas enhanced glutamine catabolism furnishes glutamate; together these fuels expand reduced glutathione (GSH) and metallothionein (MT) pools that chelate Cu¹⁺ and quench reactive oxygen species exactly where cuproptosis is executed. Consequently, glycolysis-dependent cancer cells are far less sensitive to copper-ionophore drugs such as elesclomol or disulfiram than respiration-dependent counterparts, and clinical datasets consistently link high PDK and low PDC-subunit expression with poor prognosis. These insights highlight rational combination strategies: re-activating the TCA cycle with PDK inhibitors, draining PPP- or GLS-driven NADPH/GSH supply, and concurrently delivering copper ionophores could reopen the cuproptotic trap in tumours. Validating such approaches in vivo, charting upstream regulators of FDX1 and mapping crosstalk between cuproptosis and other lethal programmes remain key steps toward exploiting this copper-centred vulnerability in cancer therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信