H3K4me3调控真皮乳头细胞RSPO3的转录,影响毛囊的形态发生和发育。

IF 3.5 2区 生物学 Q1 GENETICS & HEREDITY
Zhenyu Zhong, Kangkang Bai, Zhihao Song, Mengxue Yang, Minghao Li, Shanhe Wang, Xin Wang
{"title":"H3K4me3调控真皮乳头细胞RSPO3的转录,影响毛囊的形态发生和发育。","authors":"Zhenyu Zhong, Kangkang Bai, Zhihao Song, Mengxue Yang, Minghao Li, Shanhe Wang, Xin Wang","doi":"10.1186/s13072-025-00611-8","DOIUrl":null,"url":null,"abstract":"<p><p>Morphogenesis and development of hair follicle fundamentally depend on the interaction between the epidermis and dermis, with dermal papilla cells (DPCs) playing a critical role in these processes. H3K4me3, one of the key histone modifications, is essential for coordinating gene expression. However, the epigenetic modification profile of H3K4me3 in cashmere goat DPCs and its mechanism of action in hair follicle development remain unexplored. In this study, the apparent regulation map of H3K4me3 was drawn by CUT&Tag technology. DPCs were exogenously treated with the H3K4me3 inhibitor BCL-121 and the agonist PBIT. Functional experiment results showed that increasing H3K4me3 levels significantly enhanced the proliferation capacity of DPCs and promoted the expression of Wnt signaling pathway-related genes. Subsequently, the regulatory mechanism of H3K4me3 was explored, and the differentially expressed gene RSPO3 in the embryonic stage regulated by H3K4me3 was screened through CUT&Tag and RNA-seq correlation analysis. Functional studies demonstrated that RSPO3 could promote DPCs proliferation, inhibit apoptosis, and increase the expression of genes related to the Wnt signaling pathway. In summary, our findings indicated that H3K4me3 regulates the transcription of RSPO3 in DPCs, which would lay the foundation for the molecular mechanism of hair follicle development.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"18 1","pages":"52"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12333257/pdf/","citationCount":"0","resultStr":"{\"title\":\"H3K4me3 regulates the transcription of RSPO3 in dermal papilla cells to influence hair follicle morphogenesis and development.\",\"authors\":\"Zhenyu Zhong, Kangkang Bai, Zhihao Song, Mengxue Yang, Minghao Li, Shanhe Wang, Xin Wang\",\"doi\":\"10.1186/s13072-025-00611-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Morphogenesis and development of hair follicle fundamentally depend on the interaction between the epidermis and dermis, with dermal papilla cells (DPCs) playing a critical role in these processes. H3K4me3, one of the key histone modifications, is essential for coordinating gene expression. However, the epigenetic modification profile of H3K4me3 in cashmere goat DPCs and its mechanism of action in hair follicle development remain unexplored. In this study, the apparent regulation map of H3K4me3 was drawn by CUT&Tag technology. DPCs were exogenously treated with the H3K4me3 inhibitor BCL-121 and the agonist PBIT. Functional experiment results showed that increasing H3K4me3 levels significantly enhanced the proliferation capacity of DPCs and promoted the expression of Wnt signaling pathway-related genes. Subsequently, the regulatory mechanism of H3K4me3 was explored, and the differentially expressed gene RSPO3 in the embryonic stage regulated by H3K4me3 was screened through CUT&Tag and RNA-seq correlation analysis. Functional studies demonstrated that RSPO3 could promote DPCs proliferation, inhibit apoptosis, and increase the expression of genes related to the Wnt signaling pathway. In summary, our findings indicated that H3K4me3 regulates the transcription of RSPO3 in DPCs, which would lay the foundation for the molecular mechanism of hair follicle development.</p>\",\"PeriodicalId\":49253,\"journal\":{\"name\":\"Epigenetics & Chromatin\",\"volume\":\"18 1\",\"pages\":\"52\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12333257/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenetics & Chromatin\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13072-025-00611-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics & Chromatin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13072-025-00611-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

毛囊的形态发生和发育从根本上依赖于表皮和真皮层的相互作用,而真皮乳头细胞在这一过程中起着至关重要的作用。H3K4me3是一种关键的组蛋白修饰,对协调基因表达至关重要。然而,H3K4me3在绒山羊DPCs中的表观遗传修饰谱及其在毛囊发育中的作用机制尚不清楚。本研究采用CUT&Tag技术绘制了H3K4me3的表观调控图谱。用H3K4me3抑制剂BCL-121和激动剂PBIT外源性处理DPCs。功能实验结果显示,H3K4me3水平升高可显著增强DPCs的增殖能力,促进Wnt信号通路相关基因的表达。随后,我们探索了H3K4me3的调控机制,并通过CUT&Tag和RNA-seq相关分析筛选了H3K4me3调控的胚胎期差异表达基因RSPO3。功能研究表明,RSPO3可以促进DPCs增殖,抑制凋亡,增加Wnt信号通路相关基因的表达。综上所述,我们的研究结果表明H3K4me3调控了DPCs中RSPO3的转录,为毛囊发育的分子机制奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
H3K4me3 regulates the transcription of RSPO3 in dermal papilla cells to influence hair follicle morphogenesis and development.

Morphogenesis and development of hair follicle fundamentally depend on the interaction between the epidermis and dermis, with dermal papilla cells (DPCs) playing a critical role in these processes. H3K4me3, one of the key histone modifications, is essential for coordinating gene expression. However, the epigenetic modification profile of H3K4me3 in cashmere goat DPCs and its mechanism of action in hair follicle development remain unexplored. In this study, the apparent regulation map of H3K4me3 was drawn by CUT&Tag technology. DPCs were exogenously treated with the H3K4me3 inhibitor BCL-121 and the agonist PBIT. Functional experiment results showed that increasing H3K4me3 levels significantly enhanced the proliferation capacity of DPCs and promoted the expression of Wnt signaling pathway-related genes. Subsequently, the regulatory mechanism of H3K4me3 was explored, and the differentially expressed gene RSPO3 in the embryonic stage regulated by H3K4me3 was screened through CUT&Tag and RNA-seq correlation analysis. Functional studies demonstrated that RSPO3 could promote DPCs proliferation, inhibit apoptosis, and increase the expression of genes related to the Wnt signaling pathway. In summary, our findings indicated that H3K4me3 regulates the transcription of RSPO3 in DPCs, which would lay the foundation for the molecular mechanism of hair follicle development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epigenetics & Chromatin
Epigenetics & Chromatin GENETICS & HEREDITY-
CiteScore
7.00
自引率
0.00%
发文量
35
审稿时长
1 months
期刊介绍: Epigenetics & Chromatin is a peer-reviewed, open access, online journal that publishes research, and reviews, providing novel insights into epigenetic inheritance and chromatin-based interactions. The journal aims to understand how gene and chromosomal elements are regulated and their activities maintained during processes such as cell division, differentiation and environmental alteration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信