{"title":"在妊娠糖尿病的基础上,产前丙戊酸也会诱发自闭症行为,并轻微破坏后代的髓鞘形成和少突胶质成熟。","authors":"Maolin Li, Zhifei Qiao, Jizheng Li, Hongli Zhou, Dong Huang, Yan Cai, Xiaolong Li, Zuo Zhang, Jianyun Zhou, Jiyin Zhou","doi":"10.1038/s41398-025-03450-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Gestational diabetes mellitus (GDM) and prenatal exposure to valproic acid (VPA) are both constitute risk factors for autism in progeny. Notably, dysmyelination in the corpus callosum serves as a prominent element connecting GDM and autism in the white matter lesions.</p><p><strong>Objective: </strong>The cumulative effects of GDM and prenatal VPA on both autistic behavior and dysmyelination in progeny have been investigated in this study.</p><p><strong>Methods: </strong>In vivo, female mice exhibiting leptin receptor deficiencies and maintained on a high-fat diet were utilized to create GDM models, to which prenatal VPA was administered. In vitro, oligodendrocyte precursor cells (OPCs) were treated with VPA in the high-fat and high-glucose culture.</p><p><strong>Results: </strong>The offspring subjected to both GDM and prenatal VPA demonstrated comparable declines in social interaction, myelination, and OPC maturation, akin to those exclusively exposed to VPA. Remarkably, the application of clemastine facilitated remyelination, ameliorated autistic behaviors, and promoted the progression of OPCs. Furthermore, the compromised myelination and OPC maturation instigated by the combination of GDM and prenatal VPA were found to be less severe compared to those precipitated by VPA alone. This differential impact can be attributed to the opposing influences of GDM and VPA on gamma-aminobutyric acid receptor activation in OPCs, extracellular regulated protein kinases (ERK) phosphorylation in OPCs, and the modulation of histone deacetylase 3 and dual specificity phosphatase 5 expression.</p><p><strong>Conclusions: </strong>we delineate the antagonistic effects of GDM and prenatal VPA on ERK phosphorylation in fetal OPCs, consequently altering their proliferation and differentiation, thereby culminating in milder dysmyelination and autistic behaviors.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"271"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12332004/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prenatal valproic acid on the basis of gestational diabetes also induces autistic behavior and disrupts myelination and oligodendroglial maturation slightly in offspring.\",\"authors\":\"Maolin Li, Zhifei Qiao, Jizheng Li, Hongli Zhou, Dong Huang, Yan Cai, Xiaolong Li, Zuo Zhang, Jianyun Zhou, Jiyin Zhou\",\"doi\":\"10.1038/s41398-025-03450-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Gestational diabetes mellitus (GDM) and prenatal exposure to valproic acid (VPA) are both constitute risk factors for autism in progeny. Notably, dysmyelination in the corpus callosum serves as a prominent element connecting GDM and autism in the white matter lesions.</p><p><strong>Objective: </strong>The cumulative effects of GDM and prenatal VPA on both autistic behavior and dysmyelination in progeny have been investigated in this study.</p><p><strong>Methods: </strong>In vivo, female mice exhibiting leptin receptor deficiencies and maintained on a high-fat diet were utilized to create GDM models, to which prenatal VPA was administered. In vitro, oligodendrocyte precursor cells (OPCs) were treated with VPA in the high-fat and high-glucose culture.</p><p><strong>Results: </strong>The offspring subjected to both GDM and prenatal VPA demonstrated comparable declines in social interaction, myelination, and OPC maturation, akin to those exclusively exposed to VPA. Remarkably, the application of clemastine facilitated remyelination, ameliorated autistic behaviors, and promoted the progression of OPCs. Furthermore, the compromised myelination and OPC maturation instigated by the combination of GDM and prenatal VPA were found to be less severe compared to those precipitated by VPA alone. This differential impact can be attributed to the opposing influences of GDM and VPA on gamma-aminobutyric acid receptor activation in OPCs, extracellular regulated protein kinases (ERK) phosphorylation in OPCs, and the modulation of histone deacetylase 3 and dual specificity phosphatase 5 expression.</p><p><strong>Conclusions: </strong>we delineate the antagonistic effects of GDM and prenatal VPA on ERK phosphorylation in fetal OPCs, consequently altering their proliferation and differentiation, thereby culminating in milder dysmyelination and autistic behaviors.</p>\",\"PeriodicalId\":23278,\"journal\":{\"name\":\"Translational Psychiatry\",\"volume\":\"15 1\",\"pages\":\"271\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12332004/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41398-025-03450-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03450-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
Prenatal valproic acid on the basis of gestational diabetes also induces autistic behavior and disrupts myelination and oligodendroglial maturation slightly in offspring.
Introduction: Gestational diabetes mellitus (GDM) and prenatal exposure to valproic acid (VPA) are both constitute risk factors for autism in progeny. Notably, dysmyelination in the corpus callosum serves as a prominent element connecting GDM and autism in the white matter lesions.
Objective: The cumulative effects of GDM and prenatal VPA on both autistic behavior and dysmyelination in progeny have been investigated in this study.
Methods: In vivo, female mice exhibiting leptin receptor deficiencies and maintained on a high-fat diet were utilized to create GDM models, to which prenatal VPA was administered. In vitro, oligodendrocyte precursor cells (OPCs) were treated with VPA in the high-fat and high-glucose culture.
Results: The offspring subjected to both GDM and prenatal VPA demonstrated comparable declines in social interaction, myelination, and OPC maturation, akin to those exclusively exposed to VPA. Remarkably, the application of clemastine facilitated remyelination, ameliorated autistic behaviors, and promoted the progression of OPCs. Furthermore, the compromised myelination and OPC maturation instigated by the combination of GDM and prenatal VPA were found to be less severe compared to those precipitated by VPA alone. This differential impact can be attributed to the opposing influences of GDM and VPA on gamma-aminobutyric acid receptor activation in OPCs, extracellular regulated protein kinases (ERK) phosphorylation in OPCs, and the modulation of histone deacetylase 3 and dual specificity phosphatase 5 expression.
Conclusions: we delineate the antagonistic effects of GDM and prenatal VPA on ERK phosphorylation in fetal OPCs, consequently altering their proliferation and differentiation, thereby culminating in milder dysmyelination and autistic behaviors.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.