Muhammad Mazhar Qayyum, Umbreen Shahzad, Muhammad Shah Jahan, Hossam S El-Beltagi, Salman Ghuffar, Muhammad Qasim, Nasir Mehmood, Sadaf Anwaar, Huma Qureshi, Tauseef Anwar, Nazih Y Rebouh, Mohd Asif Shah, Muydin M Muminov
{"title":"优化赤霉素浓度和暴露时间,有效打破马铃薯休眠,促进发芽。","authors":"Muhammad Mazhar Qayyum, Umbreen Shahzad, Muhammad Shah Jahan, Hossam S El-Beltagi, Salman Ghuffar, Muhammad Qasim, Nasir Mehmood, Sadaf Anwaar, Huma Qureshi, Tauseef Anwar, Nazih Y Rebouh, Mohd Asif Shah, Muydin M Muminov","doi":"10.1038/s41598-025-13219-5","DOIUrl":null,"url":null,"abstract":"<p><p>Tuber dormancy in Solanum tuberosum L. (potato) significantly limits early growth and yield potential, highlighting the need for effective dormancy-breaking strategies. Gibberellic acid (GA₃) is widely used to stimulate sprouting, but its optimal concentration and exposure time require further evaluation. This study, conducted in 2023 at the Department of Horticulture, University of Haripur, employed a Randomized Complete Block Design (RCBD) to investigate the effects of four GA₃ concentrations (0, 50, 100, and 150 ppm) and four dipping durations (6, 12, 18, and 24 h), totaling 20 treatment combinations. Key parameters measured included sprouting percentage, time to sprout, number of sprouts per tuber, sprout length and diameter, fresh and dry sprout weight, and relative water content. Data were analyzed using one-way ANOVA at P < 0.05. The most effective treatment-150 ppm GA₃ with a 24-hour dipping duration-achieved a 98.33% sprouting rate and the shortest sprouting time (20.45 days). This combination also resulted in the highest number of sprouts (5.63), longest sprout length (10.23 cm), maximum sprout diameter (5.7 mm), greatest fresh (1.18 g) and dry weights (0.31 g), and highest relative water content (83.31%). These findings suggest that high-concentration GA₃ treatments with extended exposure durations effectively break dormancy and enhance sprouting vigor. Future research should explore the biochemical pathways involved and evaluate economic feasibility and field performance under varied agro-climatic conditions for large-scale application.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"28966"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12331952/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimizing gibberellic acid concentration and exposure time for effective dormancy breaking and sprouting enhancement in potato.\",\"authors\":\"Muhammad Mazhar Qayyum, Umbreen Shahzad, Muhammad Shah Jahan, Hossam S El-Beltagi, Salman Ghuffar, Muhammad Qasim, Nasir Mehmood, Sadaf Anwaar, Huma Qureshi, Tauseef Anwar, Nazih Y Rebouh, Mohd Asif Shah, Muydin M Muminov\",\"doi\":\"10.1038/s41598-025-13219-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tuber dormancy in Solanum tuberosum L. (potato) significantly limits early growth and yield potential, highlighting the need for effective dormancy-breaking strategies. Gibberellic acid (GA₃) is widely used to stimulate sprouting, but its optimal concentration and exposure time require further evaluation. This study, conducted in 2023 at the Department of Horticulture, University of Haripur, employed a Randomized Complete Block Design (RCBD) to investigate the effects of four GA₃ concentrations (0, 50, 100, and 150 ppm) and four dipping durations (6, 12, 18, and 24 h), totaling 20 treatment combinations. Key parameters measured included sprouting percentage, time to sprout, number of sprouts per tuber, sprout length and diameter, fresh and dry sprout weight, and relative water content. Data were analyzed using one-way ANOVA at P < 0.05. The most effective treatment-150 ppm GA₃ with a 24-hour dipping duration-achieved a 98.33% sprouting rate and the shortest sprouting time (20.45 days). This combination also resulted in the highest number of sprouts (5.63), longest sprout length (10.23 cm), maximum sprout diameter (5.7 mm), greatest fresh (1.18 g) and dry weights (0.31 g), and highest relative water content (83.31%). These findings suggest that high-concentration GA₃ treatments with extended exposure durations effectively break dormancy and enhance sprouting vigor. Future research should explore the biochemical pathways involved and evaluate economic feasibility and field performance under varied agro-climatic conditions for large-scale application.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"28966\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12331952/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-13219-5\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-13219-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Optimizing gibberellic acid concentration and exposure time for effective dormancy breaking and sprouting enhancement in potato.
Tuber dormancy in Solanum tuberosum L. (potato) significantly limits early growth and yield potential, highlighting the need for effective dormancy-breaking strategies. Gibberellic acid (GA₃) is widely used to stimulate sprouting, but its optimal concentration and exposure time require further evaluation. This study, conducted in 2023 at the Department of Horticulture, University of Haripur, employed a Randomized Complete Block Design (RCBD) to investigate the effects of four GA₃ concentrations (0, 50, 100, and 150 ppm) and four dipping durations (6, 12, 18, and 24 h), totaling 20 treatment combinations. Key parameters measured included sprouting percentage, time to sprout, number of sprouts per tuber, sprout length and diameter, fresh and dry sprout weight, and relative water content. Data were analyzed using one-way ANOVA at P < 0.05. The most effective treatment-150 ppm GA₃ with a 24-hour dipping duration-achieved a 98.33% sprouting rate and the shortest sprouting time (20.45 days). This combination also resulted in the highest number of sprouts (5.63), longest sprout length (10.23 cm), maximum sprout diameter (5.7 mm), greatest fresh (1.18 g) and dry weights (0.31 g), and highest relative water content (83.31%). These findings suggest that high-concentration GA₃ treatments with extended exposure durations effectively break dormancy and enhance sprouting vigor. Future research should explore the biochemical pathways involved and evaluate economic feasibility and field performance under varied agro-climatic conditions for large-scale application.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.