多模块unet++用于结肠癌组织病理图像分割。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Qi Liu, Zhenfeng Zhao, Yingbo Wu, Siqi Wu, Yutong He, Haibin Wang, Shenwen Wang
{"title":"多模块unet++用于结肠癌组织病理图像分割。","authors":"Qi Liu, Zhenfeng Zhao, Yingbo Wu, Siqi Wu, Yutong He, Haibin Wang, Shenwen Wang","doi":"10.1038/s41598-025-13636-6","DOIUrl":null,"url":null,"abstract":"<p><p>In the pathological diagnosis of colorectal cancer, the precise segmentation of glandular and cellular contours serves as the fundamental basis for achieving accurate clinical diagnosis. However, this task presents significant challenges due to complex phenomena such as nuclear staining heterogeneity, variations in nuclear size, boundary overlap, and nuclear clustering. With the continuous advancement of deep learning techniques-particularly encoder-decoder architectures-and the emergence of various high-performance functional modules, multi module collaborative fusion has become an effective approach to enhance segmentation performance. To this end, this study proposes the RPAU-Net++ model, which integrates the ResNet-50 encoder (R), the Joint Pyramid Fusion Module (P), and the Convolutional Block Attention Module (A) into the UNet++ framework, forming a multi-module-enhanced segmentation architecture. Specifically, ResNet-50 mitigates gradient vanishing and degradation issues in deep network training through residual skip connections, thereby improving model convergence stability and feature representation depth. JPFM achieves progressive fusion of cross-layer features via a multi-scale feature pyramid, enhancing the encoding capability for complex tissue structures and fine boundary information. CBAM employs adaptive weight allocation in both spatial and channel dimensions to focus on target region features while effectively suppressing irrelevant background noise, thereby improving feature discriminability. Comparative experiments on the GlaS and CoNIC colorectal cancer pathology datasets, as well as the more challenging PanNuke dataset, demonstrate that RPAU-Net++ significantly outperforms mainstream models in key segmentation metrics such as IoU and Dice, providing a more accurate solution for pathological image segmentation in colorectal cancer.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"28895"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12332163/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-module UNet++ for colon cancer histopathological image segmentation.\",\"authors\":\"Qi Liu, Zhenfeng Zhao, Yingbo Wu, Siqi Wu, Yutong He, Haibin Wang, Shenwen Wang\",\"doi\":\"10.1038/s41598-025-13636-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the pathological diagnosis of colorectal cancer, the precise segmentation of glandular and cellular contours serves as the fundamental basis for achieving accurate clinical diagnosis. However, this task presents significant challenges due to complex phenomena such as nuclear staining heterogeneity, variations in nuclear size, boundary overlap, and nuclear clustering. With the continuous advancement of deep learning techniques-particularly encoder-decoder architectures-and the emergence of various high-performance functional modules, multi module collaborative fusion has become an effective approach to enhance segmentation performance. To this end, this study proposes the RPAU-Net++ model, which integrates the ResNet-50 encoder (R), the Joint Pyramid Fusion Module (P), and the Convolutional Block Attention Module (A) into the UNet++ framework, forming a multi-module-enhanced segmentation architecture. Specifically, ResNet-50 mitigates gradient vanishing and degradation issues in deep network training through residual skip connections, thereby improving model convergence stability and feature representation depth. JPFM achieves progressive fusion of cross-layer features via a multi-scale feature pyramid, enhancing the encoding capability for complex tissue structures and fine boundary information. CBAM employs adaptive weight allocation in both spatial and channel dimensions to focus on target region features while effectively suppressing irrelevant background noise, thereby improving feature discriminability. Comparative experiments on the GlaS and CoNIC colorectal cancer pathology datasets, as well as the more challenging PanNuke dataset, demonstrate that RPAU-Net++ significantly outperforms mainstream models in key segmentation metrics such as IoU and Dice, providing a more accurate solution for pathological image segmentation in colorectal cancer.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"28895\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12332163/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-13636-6\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-13636-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在结直肠癌的病理诊断中,腺体和细胞轮廓的精确分割是实现临床准确诊断的基础。然而,由于核染色的异质性、核大小的变化、边界重叠和核聚类等复杂现象,这项任务面临着巨大的挑战。随着深度学习技术尤其是编解码器架构的不断进步和各种高性能功能模块的出现,多模块协同融合已成为提高分割性能的有效途径。为此,本研究提出了RPAU-Net++模型,该模型将ResNet-50编码器(R)、联合金字塔融合模块(P)和卷积块注意模块(A)集成到UNet++框架中,形成了多模块增强的分割体系结构。具体来说,ResNet-50通过残余跳跃连接缓解了深度网络训练中的梯度消失和退化问题,从而提高了模型的收敛稳定性和特征表示深度。JPFM通过多尺度特征金字塔实现了跨层特征的渐进融合,增强了对复杂组织结构和精细边界信息的编码能力。CBAM在空间和信道两个维度上采用自适应权重分配,聚焦目标区域特征,同时有效抑制无关背景噪声,提高特征的可分辨性。在GlaS和CoNIC结直肠癌病理数据集以及更具挑战性的PanNuke数据集上的对比实验表明,RPAU-Net++在IoU和Dice等关键分割指标上明显优于主流模型,为结直肠癌病理图像分割提供了更准确的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-module UNet++ for colon cancer histopathological image segmentation.

In the pathological diagnosis of colorectal cancer, the precise segmentation of glandular and cellular contours serves as the fundamental basis for achieving accurate clinical diagnosis. However, this task presents significant challenges due to complex phenomena such as nuclear staining heterogeneity, variations in nuclear size, boundary overlap, and nuclear clustering. With the continuous advancement of deep learning techniques-particularly encoder-decoder architectures-and the emergence of various high-performance functional modules, multi module collaborative fusion has become an effective approach to enhance segmentation performance. To this end, this study proposes the RPAU-Net++ model, which integrates the ResNet-50 encoder (R), the Joint Pyramid Fusion Module (P), and the Convolutional Block Attention Module (A) into the UNet++ framework, forming a multi-module-enhanced segmentation architecture. Specifically, ResNet-50 mitigates gradient vanishing and degradation issues in deep network training through residual skip connections, thereby improving model convergence stability and feature representation depth. JPFM achieves progressive fusion of cross-layer features via a multi-scale feature pyramid, enhancing the encoding capability for complex tissue structures and fine boundary information. CBAM employs adaptive weight allocation in both spatial and channel dimensions to focus on target region features while effectively suppressing irrelevant background noise, thereby improving feature discriminability. Comparative experiments on the GlaS and CoNIC colorectal cancer pathology datasets, as well as the more challenging PanNuke dataset, demonstrate that RPAU-Net++ significantly outperforms mainstream models in key segmentation metrics such as IoU and Dice, providing a more accurate solution for pathological image segmentation in colorectal cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信