Jihyun Kim, Subin Lee, Min-Ki Seo, Dongmin Byun, Eunyoung Chae, Eunsook Park, Doil Choi
{"title":"效应触发免疫是本烟对稻瘟病菌非寄主抗性的关键组成部分。","authors":"Jihyun Kim, Subin Lee, Min-Ki Seo, Dongmin Byun, Eunyoung Chae, Eunsook Park, Doil Choi","doi":"10.5423/PPJ.OA.02.2025.0024","DOIUrl":null,"url":null,"abstract":"<p><p>Magnaporthe oryzae is the causal agent of rice blast disease, a major threat to global food security. Although M. oryzae infects a broad range of monocotyledonous plants, it fails to colonize dicot species such as Nicotiana benthamiana, offering a useful system to investigate nonhost resistance (NHR). In this study, we characterized the immune responses of N. benthamiana to M. oryzae by profiling defense-related gene expression, analyzing fungal invasion, and functionally dissecting key immune components. Time-course expression analyses revealed sustained upregulation of NbBAK1, NbEAS, NbWRKY22, and NbPR1, alongside dynamic regulation of NbCYP71D20 and NbSGT1. Virus-induced gene silencing demonstrated that silencing of NbSGT1, but not NbEAS or NbBAK1, significantly enhanced fungal colonization. Furthermore, salicylic acid (SA)-deficient NahG plants exhibited increased susceptibility, suggesting that SA and SGT1-dependent immunity synergistically contribute to NHR. Visualization of infection using a GFP-expressing fungal strain confirmed that suppression of SGT1 and SA signaling facilitated hyphal expansion into adjacent host cells. High-throughput screening of 179 M. oryzae candidate effectors revealed that 70 induced hypersensitive response-like cell death in N. benthamiana, a response that was abrogated by NbSGT1 silencing. These findings collectively demonstrate that SA signaling and SGT1-dependent effector-triggered immunity are critical barriers against M. oryzae invasion and highlight the potential of nonhost immune components as resources for engineering durable resistance in crops.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":"41 4","pages":"472-483"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12332412/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effector-Triggered Immunity Is a Key Component of Nonhost Resistance in Nicotiana benthamiana against the Rice Blast Pathogen Magnaporthe oryzae.\",\"authors\":\"Jihyun Kim, Subin Lee, Min-Ki Seo, Dongmin Byun, Eunyoung Chae, Eunsook Park, Doil Choi\",\"doi\":\"10.5423/PPJ.OA.02.2025.0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnaporthe oryzae is the causal agent of rice blast disease, a major threat to global food security. Although M. oryzae infects a broad range of monocotyledonous plants, it fails to colonize dicot species such as Nicotiana benthamiana, offering a useful system to investigate nonhost resistance (NHR). In this study, we characterized the immune responses of N. benthamiana to M. oryzae by profiling defense-related gene expression, analyzing fungal invasion, and functionally dissecting key immune components. Time-course expression analyses revealed sustained upregulation of NbBAK1, NbEAS, NbWRKY22, and NbPR1, alongside dynamic regulation of NbCYP71D20 and NbSGT1. Virus-induced gene silencing demonstrated that silencing of NbSGT1, but not NbEAS or NbBAK1, significantly enhanced fungal colonization. Furthermore, salicylic acid (SA)-deficient NahG plants exhibited increased susceptibility, suggesting that SA and SGT1-dependent immunity synergistically contribute to NHR. Visualization of infection using a GFP-expressing fungal strain confirmed that suppression of SGT1 and SA signaling facilitated hyphal expansion into adjacent host cells. High-throughput screening of 179 M. oryzae candidate effectors revealed that 70 induced hypersensitive response-like cell death in N. benthamiana, a response that was abrogated by NbSGT1 silencing. These findings collectively demonstrate that SA signaling and SGT1-dependent effector-triggered immunity are critical barriers against M. oryzae invasion and highlight the potential of nonhost immune components as resources for engineering durable resistance in crops.</p>\",\"PeriodicalId\":20173,\"journal\":{\"name\":\"Plant Pathology Journal\",\"volume\":\"41 4\",\"pages\":\"472-483\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12332412/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Pathology Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5423/PPJ.OA.02.2025.0024\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Pathology Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5423/PPJ.OA.02.2025.0024","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Effector-Triggered Immunity Is a Key Component of Nonhost Resistance in Nicotiana benthamiana against the Rice Blast Pathogen Magnaporthe oryzae.
Magnaporthe oryzae is the causal agent of rice blast disease, a major threat to global food security. Although M. oryzae infects a broad range of monocotyledonous plants, it fails to colonize dicot species such as Nicotiana benthamiana, offering a useful system to investigate nonhost resistance (NHR). In this study, we characterized the immune responses of N. benthamiana to M. oryzae by profiling defense-related gene expression, analyzing fungal invasion, and functionally dissecting key immune components. Time-course expression analyses revealed sustained upregulation of NbBAK1, NbEAS, NbWRKY22, and NbPR1, alongside dynamic regulation of NbCYP71D20 and NbSGT1. Virus-induced gene silencing demonstrated that silencing of NbSGT1, but not NbEAS or NbBAK1, significantly enhanced fungal colonization. Furthermore, salicylic acid (SA)-deficient NahG plants exhibited increased susceptibility, suggesting that SA and SGT1-dependent immunity synergistically contribute to NHR. Visualization of infection using a GFP-expressing fungal strain confirmed that suppression of SGT1 and SA signaling facilitated hyphal expansion into adjacent host cells. High-throughput screening of 179 M. oryzae candidate effectors revealed that 70 induced hypersensitive response-like cell death in N. benthamiana, a response that was abrogated by NbSGT1 silencing. These findings collectively demonstrate that SA signaling and SGT1-dependent effector-triggered immunity are critical barriers against M. oryzae invasion and highlight the potential of nonhost immune components as resources for engineering durable resistance in crops.