Pablo Gil Chong, Miguel Mazon, Leonor Cerdá-Alberich, Maria Beser Robles, José Miguel Carot, Juan Francisco Vázquez-Costa, Luis Martí-Bonmatí
{"title":"使用mri衍生特征分析肌萎缩侧索硬化的机器学习诊断模型。","authors":"Pablo Gil Chong, Miguel Mazon, Leonor Cerdá-Alberich, Maria Beser Robles, José Miguel Carot, Juan Francisco Vázquez-Costa, Luis Martí-Bonmatí","doi":"10.1007/s00234-025-03732-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Amyotrophic Lateral Sclerosis is a devastating motor neuron disease characterized by its diagnostic difficulty. Currently, no reliable biomarkers exist in the diagnosis process. In this scenario, our purpose is the application of machine learning algorithms to imaging MRI-derived variables for the development of diagnostic models that facilitate and shorten the process.</p><p><strong>Methods: </strong>A dataset of 211 patients (114 ALS, 45 mimic, 22 genetic carriers and 30 control) with MRI-derived features of volumetry, cortical thickness and local iron (via T2* mapping, and visual assessment of susceptibility imaging). A binary classification task approach has been taken to classify patients with and without ALS. A sequential modeling methodology, understood from an iterative improvement perspective, has been followed, analyzing each group's performance separately to adequately improve modelling. Feature filtering techniques, dimensionality reduction techniques (PCA, kernel PCA), oversampling techniques (SMOTE, ADASYN) and classification techniques (logistic regression, LASSO, Ridge, ElasticNet, Support Vector Classifier, K-neighbors, random forest) were included. Three subsets of available data have been used for each proposed architecture: a subset containing automatic retrieval MRI-derived data, a subset containing the variables from the visual analysis of the susceptibility imaging and a subset containing all features.</p><p><strong>Results: </strong>The best results have been attained with all the available data through a voting classifier composed of five different classifiers: accuracy = 0.896, AUC = 0.929, sensitivity = 0.886, specificity = 0.929.</p><p><strong>Conclusion: </strong>These results confirm the potential of ML techniques applied to imaging variables of volumetry, cortical thickness, and local iron for the development of diagnostic model as a clinical tool for decision-making support.</p>","PeriodicalId":19422,"journal":{"name":"Neuroradiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning diagnostic model for amyotrophic lateral sclerosis analysis using MRI-derived features.\",\"authors\":\"Pablo Gil Chong, Miguel Mazon, Leonor Cerdá-Alberich, Maria Beser Robles, José Miguel Carot, Juan Francisco Vázquez-Costa, Luis Martí-Bonmatí\",\"doi\":\"10.1007/s00234-025-03732-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Amyotrophic Lateral Sclerosis is a devastating motor neuron disease characterized by its diagnostic difficulty. Currently, no reliable biomarkers exist in the diagnosis process. In this scenario, our purpose is the application of machine learning algorithms to imaging MRI-derived variables for the development of diagnostic models that facilitate and shorten the process.</p><p><strong>Methods: </strong>A dataset of 211 patients (114 ALS, 45 mimic, 22 genetic carriers and 30 control) with MRI-derived features of volumetry, cortical thickness and local iron (via T2* mapping, and visual assessment of susceptibility imaging). A binary classification task approach has been taken to classify patients with and without ALS. A sequential modeling methodology, understood from an iterative improvement perspective, has been followed, analyzing each group's performance separately to adequately improve modelling. Feature filtering techniques, dimensionality reduction techniques (PCA, kernel PCA), oversampling techniques (SMOTE, ADASYN) and classification techniques (logistic regression, LASSO, Ridge, ElasticNet, Support Vector Classifier, K-neighbors, random forest) were included. Three subsets of available data have been used for each proposed architecture: a subset containing automatic retrieval MRI-derived data, a subset containing the variables from the visual analysis of the susceptibility imaging and a subset containing all features.</p><p><strong>Results: </strong>The best results have been attained with all the available data through a voting classifier composed of five different classifiers: accuracy = 0.896, AUC = 0.929, sensitivity = 0.886, specificity = 0.929.</p><p><strong>Conclusion: </strong>These results confirm the potential of ML techniques applied to imaging variables of volumetry, cortical thickness, and local iron for the development of diagnostic model as a clinical tool for decision-making support.</p>\",\"PeriodicalId\":19422,\"journal\":{\"name\":\"Neuroradiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroradiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00234-025-03732-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroradiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00234-025-03732-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Machine learning diagnostic model for amyotrophic lateral sclerosis analysis using MRI-derived features.
Purpose: Amyotrophic Lateral Sclerosis is a devastating motor neuron disease characterized by its diagnostic difficulty. Currently, no reliable biomarkers exist in the diagnosis process. In this scenario, our purpose is the application of machine learning algorithms to imaging MRI-derived variables for the development of diagnostic models that facilitate and shorten the process.
Methods: A dataset of 211 patients (114 ALS, 45 mimic, 22 genetic carriers and 30 control) with MRI-derived features of volumetry, cortical thickness and local iron (via T2* mapping, and visual assessment of susceptibility imaging). A binary classification task approach has been taken to classify patients with and without ALS. A sequential modeling methodology, understood from an iterative improvement perspective, has been followed, analyzing each group's performance separately to adequately improve modelling. Feature filtering techniques, dimensionality reduction techniques (PCA, kernel PCA), oversampling techniques (SMOTE, ADASYN) and classification techniques (logistic regression, LASSO, Ridge, ElasticNet, Support Vector Classifier, K-neighbors, random forest) were included. Three subsets of available data have been used for each proposed architecture: a subset containing automatic retrieval MRI-derived data, a subset containing the variables from the visual analysis of the susceptibility imaging and a subset containing all features.
Results: The best results have been attained with all the available data through a voting classifier composed of five different classifiers: accuracy = 0.896, AUC = 0.929, sensitivity = 0.886, specificity = 0.929.
Conclusion: These results confirm the potential of ML techniques applied to imaging variables of volumetry, cortical thickness, and local iron for the development of diagnostic model as a clinical tool for decision-making support.
期刊介绍:
Neuroradiology aims to provide state-of-the-art medical and scientific information in the fields of Neuroradiology, Neurosciences, Neurology, Psychiatry, Neurosurgery, and related medical specialities. Neuroradiology as the official Journal of the European Society of Neuroradiology receives submissions from all parts of the world and publishes peer-reviewed original research, comprehensive reviews, educational papers, opinion papers, and short reports on exceptional clinical observations and new technical developments in the field of Neuroimaging and Neurointervention. The journal has subsections for Diagnostic and Interventional Neuroradiology, Advanced Neuroimaging, Paediatric Neuroradiology, Head-Neck-ENT Radiology, Spine Neuroradiology, and for submissions from Japan. Neuroradiology aims to provide new knowledge about and insights into the function and pathology of the human nervous system that may help to better diagnose and treat nervous system diseases. Neuroradiology is a member of the Committee on Publication Ethics (COPE) and follows the COPE core practices. Neuroradiology prefers articles that are free of bias, self-critical regarding limitations, transparent and clear in describing study participants, methods, and statistics, and short in presenting results. Before peer-review all submissions are automatically checked by iThenticate to assess for potential overlap in prior publication.