{"title":"一种在辐射条件下对活细胞进行亚细胞分辨率原位观察的定量辐照显微镜平台。","authors":"Zhao Chen, Liang Li, Jianli Liu, Yufang Zhao, Chenguang Liu, Jian Liu","doi":"10.1111/jmi.70024","DOIUrl":null,"url":null,"abstract":"<p><p>To address the critical need for investigating proton radiation effects on living cells in space environments and deciphering biological mechanisms underlying low-dose cumulative radiation effects, this study developed a microbeam irradiation microscopy platform. The system integrates a 10 MeV proton accelerator with a vertical microbeam line design. An ultrafast single-proton counting and radiation synchronisation control module-employing proton-photon-electron conversion and high-speed photoelectric circuitry achieve deterministic irradiation control with an end-to-end operational delay of 273.5 ns. Coupled with wide-field and confocal fluorescence microscopy, the platform enables real-time in situ observation during quantitative cellular irradiation, facilitating mechanistic studies of radiation-induced damage patterns and signal transduction in low-dose scenarios. Experimental validation using human embryonic kidney 293T cells demonstrated successful simulation of space radiation environments: dose-dependent DNA double-strand breaks (visualised via γ-H2AX foci) and radiation-induced bystander effects triggering damage propagation. These results establish the platform as an indispensable tool for space radiation health risk assessment while providing foundational insights into microscale energy deposition dynamics for proton therapy research.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quantitative irradiation microscopy platform for in situ observation of living cells with subcellular resolution under radiation conditions.\",\"authors\":\"Zhao Chen, Liang Li, Jianli Liu, Yufang Zhao, Chenguang Liu, Jian Liu\",\"doi\":\"10.1111/jmi.70024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address the critical need for investigating proton radiation effects on living cells in space environments and deciphering biological mechanisms underlying low-dose cumulative radiation effects, this study developed a microbeam irradiation microscopy platform. The system integrates a 10 MeV proton accelerator with a vertical microbeam line design. An ultrafast single-proton counting and radiation synchronisation control module-employing proton-photon-electron conversion and high-speed photoelectric circuitry achieve deterministic irradiation control with an end-to-end operational delay of 273.5 ns. Coupled with wide-field and confocal fluorescence microscopy, the platform enables real-time in situ observation during quantitative cellular irradiation, facilitating mechanistic studies of radiation-induced damage patterns and signal transduction in low-dose scenarios. Experimental validation using human embryonic kidney 293T cells demonstrated successful simulation of space radiation environments: dose-dependent DNA double-strand breaks (visualised via γ-H2AX foci) and radiation-induced bystander effects triggering damage propagation. These results establish the platform as an indispensable tool for space radiation health risk assessment while providing foundational insights into microscale energy deposition dynamics for proton therapy research.</p>\",\"PeriodicalId\":16484,\"journal\":{\"name\":\"Journal of microscopy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/jmi.70024\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.70024","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
A quantitative irradiation microscopy platform for in situ observation of living cells with subcellular resolution under radiation conditions.
To address the critical need for investigating proton radiation effects on living cells in space environments and deciphering biological mechanisms underlying low-dose cumulative radiation effects, this study developed a microbeam irradiation microscopy platform. The system integrates a 10 MeV proton accelerator with a vertical microbeam line design. An ultrafast single-proton counting and radiation synchronisation control module-employing proton-photon-electron conversion and high-speed photoelectric circuitry achieve deterministic irradiation control with an end-to-end operational delay of 273.5 ns. Coupled with wide-field and confocal fluorescence microscopy, the platform enables real-time in situ observation during quantitative cellular irradiation, facilitating mechanistic studies of radiation-induced damage patterns and signal transduction in low-dose scenarios. Experimental validation using human embryonic kidney 293T cells demonstrated successful simulation of space radiation environments: dose-dependent DNA double-strand breaks (visualised via γ-H2AX foci) and radiation-induced bystander effects triggering damage propagation. These results establish the platform as an indispensable tool for space radiation health risk assessment while providing foundational insights into microscale energy deposition dynamics for proton therapy research.
期刊介绍:
The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit.
The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens.
Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.