{"title":"血根碱通过激活Nrf2/NLRP3通路减轻缺氧/再氧化引发的H9c2细胞损伤。","authors":"Bo Qiu, Xin Li, Wenna Wang","doi":"10.3164/jcbn.24-235","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial ischemia/reperfusion injury (MI/RI) is a prevalent condition encountered by many patients with ischemic heart disease, which can badly influence the health of patients and even do harm their lives. Sanguinarine (SA), one active ingredient separated from the poppy family, and exhibits anti-oxidant, anti-tumor, and anti-inflammation properties. However, the precise regulatory impacts and associated mechanisms of SA in the progression of MI/RI remain largely elusive. In this study, firstly, H9c2 cells were treated by hypoxia/reoxygenation (HR) to mimic MI/RI cell model. It was uncovered that SA strengthened HR-mediated cell viability of H9c2 cells. Following HR treatment, there was an increase in the production of inflammatory markers (TNF-α, IL-1β, and IL-6), whereas this effect was mitigated after SA treatment. The oxidative stress was heightened after HR treatment, but this phenomenon was offset after SA treatment. SA activated the Nrf2/NLRP3 pathway and relieved proptosis. At last, through rescue assays, it was demonstrated that SA improved HR-triggered inflammation and oxidative stress through Nrf2 pathway. SA also modulated HR-triggered cell viability, inflammation, and oxidative stress in rat primary cardiomyocytes. In summary, our findings indicate that SA protects against HR-induced H9c2 cell injury through activation of the Nrf2/NLRP3 pathway. This discovery suggests that SA may be one helpful drug for ameliorating MI/RI.</p>","PeriodicalId":15429,"journal":{"name":"Journal of Clinical Biochemistry and Nutrition","volume":"77 1","pages":"37-44"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12326247/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sanguinarine attenuates hypoxia/reoxygenation-triggered H9c2 cell injury through activation of the Nrf2/NLRP3 pathway.\",\"authors\":\"Bo Qiu, Xin Li, Wenna Wang\",\"doi\":\"10.3164/jcbn.24-235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Myocardial ischemia/reperfusion injury (MI/RI) is a prevalent condition encountered by many patients with ischemic heart disease, which can badly influence the health of patients and even do harm their lives. Sanguinarine (SA), one active ingredient separated from the poppy family, and exhibits anti-oxidant, anti-tumor, and anti-inflammation properties. However, the precise regulatory impacts and associated mechanisms of SA in the progression of MI/RI remain largely elusive. In this study, firstly, H9c2 cells were treated by hypoxia/reoxygenation (HR) to mimic MI/RI cell model. It was uncovered that SA strengthened HR-mediated cell viability of H9c2 cells. Following HR treatment, there was an increase in the production of inflammatory markers (TNF-α, IL-1β, and IL-6), whereas this effect was mitigated after SA treatment. The oxidative stress was heightened after HR treatment, but this phenomenon was offset after SA treatment. SA activated the Nrf2/NLRP3 pathway and relieved proptosis. At last, through rescue assays, it was demonstrated that SA improved HR-triggered inflammation and oxidative stress through Nrf2 pathway. SA also modulated HR-triggered cell viability, inflammation, and oxidative stress in rat primary cardiomyocytes. In summary, our findings indicate that SA protects against HR-induced H9c2 cell injury through activation of the Nrf2/NLRP3 pathway. This discovery suggests that SA may be one helpful drug for ameliorating MI/RI.</p>\",\"PeriodicalId\":15429,\"journal\":{\"name\":\"Journal of Clinical Biochemistry and Nutrition\",\"volume\":\"77 1\",\"pages\":\"37-44\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12326247/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Biochemistry and Nutrition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3164/jcbn.24-235\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Biochemistry and Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3164/jcbn.24-235","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Sanguinarine attenuates hypoxia/reoxygenation-triggered H9c2 cell injury through activation of the Nrf2/NLRP3 pathway.
Myocardial ischemia/reperfusion injury (MI/RI) is a prevalent condition encountered by many patients with ischemic heart disease, which can badly influence the health of patients and even do harm their lives. Sanguinarine (SA), one active ingredient separated from the poppy family, and exhibits anti-oxidant, anti-tumor, and anti-inflammation properties. However, the precise regulatory impacts and associated mechanisms of SA in the progression of MI/RI remain largely elusive. In this study, firstly, H9c2 cells were treated by hypoxia/reoxygenation (HR) to mimic MI/RI cell model. It was uncovered that SA strengthened HR-mediated cell viability of H9c2 cells. Following HR treatment, there was an increase in the production of inflammatory markers (TNF-α, IL-1β, and IL-6), whereas this effect was mitigated after SA treatment. The oxidative stress was heightened after HR treatment, but this phenomenon was offset after SA treatment. SA activated the Nrf2/NLRP3 pathway and relieved proptosis. At last, through rescue assays, it was demonstrated that SA improved HR-triggered inflammation and oxidative stress through Nrf2 pathway. SA also modulated HR-triggered cell viability, inflammation, and oxidative stress in rat primary cardiomyocytes. In summary, our findings indicate that SA protects against HR-induced H9c2 cell injury through activation of the Nrf2/NLRP3 pathway. This discovery suggests that SA may be one helpful drug for ameliorating MI/RI.
期刊介绍:
Journal of Clinical Biochemistry and Nutrition (JCBN) is
an international, interdisciplinary publication encompassing
chemical, biochemical, physiological, pathological, toxicological and medical approaches to research on lipid peroxidation, free radicals, oxidative stress and nutrition. The
Journal welcomes original contributions dealing with all
aspects of clinical biochemistry and clinical nutrition
including both in vitro and in vivo studies.