{"title":"8- prenylnaringin通过脂联素分泌抑制高脂饮食C57BL/6J小鼠的肥胖。","authors":"Fukiko Okada, Akiko Kohara, Yuichi Ukawa, Rie Mukai, Hitoshi Ashida, Yoko Yamashita","doi":"10.3164/jcbn.24-214","DOIUrl":null,"url":null,"abstract":"<p><p>8-Prenylnaringenin (8-PN) is a prenylflavonoid found in hops (<i>Humulus lupulus L.</i>). It has several beneficial functions, which include the inhibition of bone loss and muscle atrophy. 8-PN is a metabolite of xanthohumol, which can prevent obesity in mice; however, the effect of 8-PN on obesity is still unknown. In the present study, we found that 8-PN prevented obesity in high-fat diet-fed mice. When C57BL6/J male mice were fed 8-PN at 0.0005% or 0.005% with a high-fat diet for 8 weeks, body weight gain, fat accumulation in adipose tissue, and fatty liver induced by the high-fat diet were prevented. In mice fed a high-fat diet and 8-PN, adenosine monophosphate-activated protein kinase (AMPK) was activated in visceral adipose tissue, which was accompanied by decreased expression of a fatty acid synthesis-related factor and increased expression of a mitochondrial biosynthesis-related factor downstream of AMPK. AMPK appeared to be activated by adiponectin secretion, which was associated with increased expression of adipocyte differentiation markers in mice fed a high-fat diet and 8-PN. For the first time, this study shows that 8-PN can prevent obesity in mice and that it is effective at low concentrations that humans could consume in their daily diet.</p>","PeriodicalId":15429,"journal":{"name":"Journal of Clinical Biochemistry and Nutrition","volume":"77 1","pages":"64-73"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12326250/pdf/","citationCount":"0","resultStr":"{\"title\":\"8-Prenylnaringenin suppresses obesity in high-fat diet-fed C57BL/6J mice via adiponectin secretion.\",\"authors\":\"Fukiko Okada, Akiko Kohara, Yuichi Ukawa, Rie Mukai, Hitoshi Ashida, Yoko Yamashita\",\"doi\":\"10.3164/jcbn.24-214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>8-Prenylnaringenin (8-PN) is a prenylflavonoid found in hops (<i>Humulus lupulus L.</i>). It has several beneficial functions, which include the inhibition of bone loss and muscle atrophy. 8-PN is a metabolite of xanthohumol, which can prevent obesity in mice; however, the effect of 8-PN on obesity is still unknown. In the present study, we found that 8-PN prevented obesity in high-fat diet-fed mice. When C57BL6/J male mice were fed 8-PN at 0.0005% or 0.005% with a high-fat diet for 8 weeks, body weight gain, fat accumulation in adipose tissue, and fatty liver induced by the high-fat diet were prevented. In mice fed a high-fat diet and 8-PN, adenosine monophosphate-activated protein kinase (AMPK) was activated in visceral adipose tissue, which was accompanied by decreased expression of a fatty acid synthesis-related factor and increased expression of a mitochondrial biosynthesis-related factor downstream of AMPK. AMPK appeared to be activated by adiponectin secretion, which was associated with increased expression of adipocyte differentiation markers in mice fed a high-fat diet and 8-PN. For the first time, this study shows that 8-PN can prevent obesity in mice and that it is effective at low concentrations that humans could consume in their daily diet.</p>\",\"PeriodicalId\":15429,\"journal\":{\"name\":\"Journal of Clinical Biochemistry and Nutrition\",\"volume\":\"77 1\",\"pages\":\"64-73\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12326250/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Biochemistry and Nutrition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3164/jcbn.24-214\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Biochemistry and Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3164/jcbn.24-214","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
8-Prenylnaringenin suppresses obesity in high-fat diet-fed C57BL/6J mice via adiponectin secretion.
8-Prenylnaringenin (8-PN) is a prenylflavonoid found in hops (Humulus lupulus L.). It has several beneficial functions, which include the inhibition of bone loss and muscle atrophy. 8-PN is a metabolite of xanthohumol, which can prevent obesity in mice; however, the effect of 8-PN on obesity is still unknown. In the present study, we found that 8-PN prevented obesity in high-fat diet-fed mice. When C57BL6/J male mice were fed 8-PN at 0.0005% or 0.005% with a high-fat diet for 8 weeks, body weight gain, fat accumulation in adipose tissue, and fatty liver induced by the high-fat diet were prevented. In mice fed a high-fat diet and 8-PN, adenosine monophosphate-activated protein kinase (AMPK) was activated in visceral adipose tissue, which was accompanied by decreased expression of a fatty acid synthesis-related factor and increased expression of a mitochondrial biosynthesis-related factor downstream of AMPK. AMPK appeared to be activated by adiponectin secretion, which was associated with increased expression of adipocyte differentiation markers in mice fed a high-fat diet and 8-PN. For the first time, this study shows that 8-PN can prevent obesity in mice and that it is effective at low concentrations that humans could consume in their daily diet.
期刊介绍:
Journal of Clinical Biochemistry and Nutrition (JCBN) is
an international, interdisciplinary publication encompassing
chemical, biochemical, physiological, pathological, toxicological and medical approaches to research on lipid peroxidation, free radicals, oxidative stress and nutrition. The
Journal welcomes original contributions dealing with all
aspects of clinical biochemistry and clinical nutrition
including both in vitro and in vivo studies.