Xiang Kong, Shi Yao Wu, Jing Zhou Jiang, Song Luo, Jun Zhang, Gui Fen Yang, Guang Ming Lu, Long Jiang Zhang
{"title":"双歧杆菌和粪便菌群移植对慢性肝性脑病大鼠的疗效评价[18F]PBR146神经炎症成像。","authors":"Xiang Kong, Shi Yao Wu, Jing Zhou Jiang, Song Luo, Jun Zhang, Gui Fen Yang, Guang Ming Lu, Long Jiang Zhang","doi":"10.1111/ejn.70227","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroinflammation significantly contributes to hepatic encephalopathy (HE). The radiotracer [<sup>18</sup>F]PBR146 is used for in vivo imaging of neuroinflammation. Promising treatments like Bifidobacterium (BIF) and fecal microbiota transplantation (FMT) are being explored for HE. This study evaluated and compared the efficacies of BIF and FMT in reducing neuroinflammation in chronic HE rats induced by bile duct ligation (BDL) using [<sup>18</sup>F]PBR146 micro-PET/CT imaging. Thirty rats were divided into four groups: (1) Sham-operated rats received normal saline (Sham + NS group), (2) BDL rats treated with NS (BDL + NS group), (3) BDL rats administered with BIF (BDL + BIF group), and (4) BDL rats administered with FMT (BDL + FMT group). Following the establishment of the chronic HE model, we conducted sequential behavioral assessments, collected fecal samples, and performed micro-PET/CT scans. Data analysis included average %ID/g values across the whole brain and specific regions, alongside biochemical and pathological evaluations. No significant differences in behavioral results or levels of IL-1β, IL-6, IL-10, and TNF-α were found among the groups. While there was no significant difference in global brain uptake values of [<sup>18</sup>F]PBR146 among the four groups (p = 0.053), regional analyses showed significant discrepancies in areas such as the bilateral accumbens and retrosplenial cortex. The Sham + NS group was enriched with Parasutterella, Streptococcus, and Anaeroplasma, the BDL + FMT group had Enterococcus, Aestuariispira, Lactobacillus, Pseudomonas, and Globicatella, while the BDL + BIF group contained Enterorhabdus. Results indicated that BIF inhibited neuroinflammation in BDL rats, whereas FMT showed no positive effects, possibly due to dysbiosis. Notably, [<sup>18</sup>F]PBR146 could effectively and noninvasively monitor the efficacies of gut-targeted treatments in chronic HE models.</p>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"62 3","pages":"e70227"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficacies of Bifidobacterium and Fecal Microbiota Transplantation in Rats With Chronic Hepatic Encephalopathy Assessed by [<sup>18</sup>F]PBR146 Imaging of Neuroinflammation.\",\"authors\":\"Xiang Kong, Shi Yao Wu, Jing Zhou Jiang, Song Luo, Jun Zhang, Gui Fen Yang, Guang Ming Lu, Long Jiang Zhang\",\"doi\":\"10.1111/ejn.70227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroinflammation significantly contributes to hepatic encephalopathy (HE). The radiotracer [<sup>18</sup>F]PBR146 is used for in vivo imaging of neuroinflammation. Promising treatments like Bifidobacterium (BIF) and fecal microbiota transplantation (FMT) are being explored for HE. This study evaluated and compared the efficacies of BIF and FMT in reducing neuroinflammation in chronic HE rats induced by bile duct ligation (BDL) using [<sup>18</sup>F]PBR146 micro-PET/CT imaging. Thirty rats were divided into four groups: (1) Sham-operated rats received normal saline (Sham + NS group), (2) BDL rats treated with NS (BDL + NS group), (3) BDL rats administered with BIF (BDL + BIF group), and (4) BDL rats administered with FMT (BDL + FMT group). Following the establishment of the chronic HE model, we conducted sequential behavioral assessments, collected fecal samples, and performed micro-PET/CT scans. Data analysis included average %ID/g values across the whole brain and specific regions, alongside biochemical and pathological evaluations. No significant differences in behavioral results or levels of IL-1β, IL-6, IL-10, and TNF-α were found among the groups. While there was no significant difference in global brain uptake values of [<sup>18</sup>F]PBR146 among the four groups (p = 0.053), regional analyses showed significant discrepancies in areas such as the bilateral accumbens and retrosplenial cortex. The Sham + NS group was enriched with Parasutterella, Streptococcus, and Anaeroplasma, the BDL + FMT group had Enterococcus, Aestuariispira, Lactobacillus, Pseudomonas, and Globicatella, while the BDL + BIF group contained Enterorhabdus. Results indicated that BIF inhibited neuroinflammation in BDL rats, whereas FMT showed no positive effects, possibly due to dysbiosis. Notably, [<sup>18</sup>F]PBR146 could effectively and noninvasively monitor the efficacies of gut-targeted treatments in chronic HE models.</p>\",\"PeriodicalId\":11993,\"journal\":{\"name\":\"European Journal of Neuroscience\",\"volume\":\"62 3\",\"pages\":\"e70227\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/ejn.70227\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/ejn.70227","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Efficacies of Bifidobacterium and Fecal Microbiota Transplantation in Rats With Chronic Hepatic Encephalopathy Assessed by [18F]PBR146 Imaging of Neuroinflammation.
Neuroinflammation significantly contributes to hepatic encephalopathy (HE). The radiotracer [18F]PBR146 is used for in vivo imaging of neuroinflammation. Promising treatments like Bifidobacterium (BIF) and fecal microbiota transplantation (FMT) are being explored for HE. This study evaluated and compared the efficacies of BIF and FMT in reducing neuroinflammation in chronic HE rats induced by bile duct ligation (BDL) using [18F]PBR146 micro-PET/CT imaging. Thirty rats were divided into four groups: (1) Sham-operated rats received normal saline (Sham + NS group), (2) BDL rats treated with NS (BDL + NS group), (3) BDL rats administered with BIF (BDL + BIF group), and (4) BDL rats administered with FMT (BDL + FMT group). Following the establishment of the chronic HE model, we conducted sequential behavioral assessments, collected fecal samples, and performed micro-PET/CT scans. Data analysis included average %ID/g values across the whole brain and specific regions, alongside biochemical and pathological evaluations. No significant differences in behavioral results or levels of IL-1β, IL-6, IL-10, and TNF-α were found among the groups. While there was no significant difference in global brain uptake values of [18F]PBR146 among the four groups (p = 0.053), regional analyses showed significant discrepancies in areas such as the bilateral accumbens and retrosplenial cortex. The Sham + NS group was enriched with Parasutterella, Streptococcus, and Anaeroplasma, the BDL + FMT group had Enterococcus, Aestuariispira, Lactobacillus, Pseudomonas, and Globicatella, while the BDL + BIF group contained Enterorhabdus. Results indicated that BIF inhibited neuroinflammation in BDL rats, whereas FMT showed no positive effects, possibly due to dysbiosis. Notably, [18F]PBR146 could effectively and noninvasively monitor the efficacies of gut-targeted treatments in chronic HE models.
期刊介绍:
EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.