{"title":"一个能感知力的光驱动自振器。","authors":"Zixuan Deng, Arri Priimagi, Kai Li, Hao Zeng","doi":"10.1038/s43246-025-00903-2","DOIUrl":null,"url":null,"abstract":"<p><p>Light-responsive materials with intrinsic negative feedback enable self-oscillation in non-equilibrium states. Conventional systems rely on self-shadowing in bending modes but fail when shadowing is constrained. Here, we demonstrate that external mechanical forces can bypass this limitation, enabling sustained oscillations without complete shadowing. Using a vertically suspended light-responsive liquid crystal network (LCN) strip under constant irradiation, a transition from static deformation to continuous oscillation arises when a critical load is applied. This system reveals two key phenomena: (1) oscillation amplitude scales with light intensity, reaching an angular displacement of 300°-significantly surpassing bending-mode oscillators; and (2) oscillation frequency decreases with increasing load, reflecting intrinsic mechanical sensitivity. This force-assisted self-oscillation principle generalizes across diverse deformation modes, including bending, twisting, contraction, and off-axis LCN strips. By mimicking biological mechanosensation based on dissipative mechanism, our findings provide a simplified design for non-equilibrium matter capable of dynamic adaptation to mechanical loads.</p>","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":"6 1","pages":"173"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12325081/pdf/","citationCount":"0","resultStr":"{\"title\":\"A light-fueled self-oscillator that senses force.\",\"authors\":\"Zixuan Deng, Arri Priimagi, Kai Li, Hao Zeng\",\"doi\":\"10.1038/s43246-025-00903-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Light-responsive materials with intrinsic negative feedback enable self-oscillation in non-equilibrium states. Conventional systems rely on self-shadowing in bending modes but fail when shadowing is constrained. Here, we demonstrate that external mechanical forces can bypass this limitation, enabling sustained oscillations without complete shadowing. Using a vertically suspended light-responsive liquid crystal network (LCN) strip under constant irradiation, a transition from static deformation to continuous oscillation arises when a critical load is applied. This system reveals two key phenomena: (1) oscillation amplitude scales with light intensity, reaching an angular displacement of 300°-significantly surpassing bending-mode oscillators; and (2) oscillation frequency decreases with increasing load, reflecting intrinsic mechanical sensitivity. This force-assisted self-oscillation principle generalizes across diverse deformation modes, including bending, twisting, contraction, and off-axis LCN strips. By mimicking biological mechanosensation based on dissipative mechanism, our findings provide a simplified design for non-equilibrium matter capable of dynamic adaptation to mechanical loads.</p>\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":\"6 1\",\"pages\":\"173\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12325081/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43246-025-00903-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43246-025-00903-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Light-responsive materials with intrinsic negative feedback enable self-oscillation in non-equilibrium states. Conventional systems rely on self-shadowing in bending modes but fail when shadowing is constrained. Here, we demonstrate that external mechanical forces can bypass this limitation, enabling sustained oscillations without complete shadowing. Using a vertically suspended light-responsive liquid crystal network (LCN) strip under constant irradiation, a transition from static deformation to continuous oscillation arises when a critical load is applied. This system reveals two key phenomena: (1) oscillation amplitude scales with light intensity, reaching an angular displacement of 300°-significantly surpassing bending-mode oscillators; and (2) oscillation frequency decreases with increasing load, reflecting intrinsic mechanical sensitivity. This force-assisted self-oscillation principle generalizes across diverse deformation modes, including bending, twisting, contraction, and off-axis LCN strips. By mimicking biological mechanosensation based on dissipative mechanism, our findings provide a simplified design for non-equilibrium matter capable of dynamic adaptation to mechanical loads.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.