抗生素诱导的细菌细胞死亡:一种“激进”的死亡方式?

3区 医学 Q2 Medicine
Parsa Alba Farhang, Katherine L Cotten, Jamie C Smith, Kimberly M Davis
{"title":"抗生素诱导的细菌细胞死亡:一种“激进”的死亡方式?","authors":"Parsa Alba Farhang, Katherine L Cotten, Jamie C Smith, Kimberly M Davis","doi":"10.1007/82_2024_284","DOIUrl":null,"url":null,"abstract":"<p><p>The rising prevalence of antibiotic resistance is rendering certain antibiotics ineffective in treating bacterial infections of public health importance. Deepening our understanding of how these drugs induce bacterial cell death, and whether antibiotics trigger a cell death program compared to direct killing, could help generate novel antibiotics or modify existing therapeutic approaches to improve clinical outcomes. Among the most widely used bactericidal antibiotics (beta-lactams, aminoglycosides, and fluoroquinolones), the primary drug-target interactions, and how they induce cell death, are well characterized. Additionally, there has been a recent debate as to whether a generalized bacterial cell death mechanism exists, shared among bactericidal antibiotics. The hypothesized mechanism, referred to as the common reactive oxygen species (ROS) pathway in this chapter, argues that certain bactericidal antibiotics have off-target effects that increase ROS generation in an iron- and oxygen-dependent manner. Moreover, this spike in ROS is thought to also contribute to induced bacterial cell death. Here we will discuss the target-specific mechanisms of distinct classes of bactericidal antibiotics, how these promote bacterial cell death, and the data that both support and refute the existence of a common cell death pathway.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12338052/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antibiotic-Induced Bacterial Cell Death: A \\\"Radical\\\" Way of Dying?\",\"authors\":\"Parsa Alba Farhang, Katherine L Cotten, Jamie C Smith, Kimberly M Davis\",\"doi\":\"10.1007/82_2024_284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rising prevalence of antibiotic resistance is rendering certain antibiotics ineffective in treating bacterial infections of public health importance. Deepening our understanding of how these drugs induce bacterial cell death, and whether antibiotics trigger a cell death program compared to direct killing, could help generate novel antibiotics or modify existing therapeutic approaches to improve clinical outcomes. Among the most widely used bactericidal antibiotics (beta-lactams, aminoglycosides, and fluoroquinolones), the primary drug-target interactions, and how they induce cell death, are well characterized. Additionally, there has been a recent debate as to whether a generalized bacterial cell death mechanism exists, shared among bactericidal antibiotics. The hypothesized mechanism, referred to as the common reactive oxygen species (ROS) pathway in this chapter, argues that certain bactericidal antibiotics have off-target effects that increase ROS generation in an iron- and oxygen-dependent manner. Moreover, this spike in ROS is thought to also contribute to induced bacterial cell death. Here we will discuss the target-specific mechanisms of distinct classes of bactericidal antibiotics, how these promote bacterial cell death, and the data that both support and refute the existence of a common cell death pathway.</p>\",\"PeriodicalId\":11102,\"journal\":{\"name\":\"Current topics in microbiology and immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12338052/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in microbiology and immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/82_2024_284\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in microbiology and immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/82_2024_284","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

抗生素耐药性的日益流行使某些抗生素在治疗具有公共卫生重要性的细菌感染方面无效。加深我们对这些药物如何诱导细菌细胞死亡的理解,以及与直接杀伤相比,抗生素是否触发细胞死亡程序,可能有助于产生新的抗生素或修改现有的治疗方法,以改善临床结果。在最广泛使用的杀菌抗生素(β -内酰胺类、氨基糖苷类和氟喹诺酮类)中,主要的药物-靶标相互作用以及它们如何诱导细胞死亡已经得到了很好的表征。此外,最近有一个关于是否存在普遍的细菌细胞死亡机制的争论,在杀菌抗生素中共享。假设的机制,在本章中被称为共同活性氧(ROS)途径,认为某些杀菌抗生素具有脱靶效应,以铁和氧依赖的方式增加ROS的产生。此外,活性氧的激增被认为也有助于诱导细菌细胞死亡。在这里,我们将讨论不同种类的杀菌抗生素的靶向特异性机制,它们如何促进细菌细胞死亡,以及支持和反驳共同细胞死亡途径存在的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antibiotic-Induced Bacterial Cell Death: A "Radical" Way of Dying?

The rising prevalence of antibiotic resistance is rendering certain antibiotics ineffective in treating bacterial infections of public health importance. Deepening our understanding of how these drugs induce bacterial cell death, and whether antibiotics trigger a cell death program compared to direct killing, could help generate novel antibiotics or modify existing therapeutic approaches to improve clinical outcomes. Among the most widely used bactericidal antibiotics (beta-lactams, aminoglycosides, and fluoroquinolones), the primary drug-target interactions, and how they induce cell death, are well characterized. Additionally, there has been a recent debate as to whether a generalized bacterial cell death mechanism exists, shared among bactericidal antibiotics. The hypothesized mechanism, referred to as the common reactive oxygen species (ROS) pathway in this chapter, argues that certain bactericidal antibiotics have off-target effects that increase ROS generation in an iron- and oxygen-dependent manner. Moreover, this spike in ROS is thought to also contribute to induced bacterial cell death. Here we will discuss the target-specific mechanisms of distinct classes of bactericidal antibiotics, how these promote bacterial cell death, and the data that both support and refute the existence of a common cell death pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The review series Current Topics in Microbiology and Immunology provides a synthesis of the latest research findings in the areas of molecular immunology, bacteriology and virology. Each timely volume contains a wealth of information on the featured subject. This review series is designed to provide access to up-to-date, often previously unpublished information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信