17β-雌二醇灵敏检测的先进适体传感器技术。

IF 2.9 3区 医学 Q2 MEDICAL LABORATORY TECHNOLOGY
Clinica Chimica Acta Pub Date : 2026-01-01 Epub Date: 2025-08-05 DOI:10.1016/j.cca.2025.120534
Yanan Cao, Mingshu Zhou, Hua Li
{"title":"17β-雌二醇灵敏检测的先进适体传感器技术。","authors":"Yanan Cao, Mingshu Zhou, Hua Li","doi":"10.1016/j.cca.2025.120534","DOIUrl":null,"url":null,"abstract":"<p><p>The detection of 17β-estradiol (E2), a potent endocrine-disrupting compound, is critical for both environmental monitoring and biomedical diagnostics. Traditional detection methods often suffer from limitations in sensitivity, selectivity, and cost-effectiveness. Aptasensors, which utilize aptamers as biorecognition elements, offer promising alternatives because of their high specificity, stability, and adaptability. This paper explores recent advancements in aptasensor technologies for E2 detection, highlighting optical, electrochemical, and surface-enhanced Raman scattering (SERS)-based platforms. The integration of nanomaterials such as gold nanoparticles, carbon dots, and conductive polymers significantly enhances sensor performance, achieving ultralow detection limits and broad dynamic ranges. By leveraging these innovations, aptasensors provide scalable solutions for real-time monitoring of E2 in environmental, food, and clinical samples, paving the way for improved endocrine regulation and public health safety.</p>","PeriodicalId":10205,"journal":{"name":"Clinica Chimica Acta","volume":" ","pages":"120534"},"PeriodicalIF":2.9000,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced aptasensor technologies for sensitive detection of 17β-Estradiol.\",\"authors\":\"Yanan Cao, Mingshu Zhou, Hua Li\",\"doi\":\"10.1016/j.cca.2025.120534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The detection of 17β-estradiol (E2), a potent endocrine-disrupting compound, is critical for both environmental monitoring and biomedical diagnostics. Traditional detection methods often suffer from limitations in sensitivity, selectivity, and cost-effectiveness. Aptasensors, which utilize aptamers as biorecognition elements, offer promising alternatives because of their high specificity, stability, and adaptability. This paper explores recent advancements in aptasensor technologies for E2 detection, highlighting optical, electrochemical, and surface-enhanced Raman scattering (SERS)-based platforms. The integration of nanomaterials such as gold nanoparticles, carbon dots, and conductive polymers significantly enhances sensor performance, achieving ultralow detection limits and broad dynamic ranges. By leveraging these innovations, aptasensors provide scalable solutions for real-time monitoring of E2 in environmental, food, and clinical samples, paving the way for improved endocrine regulation and public health safety.</p>\",\"PeriodicalId\":10205,\"journal\":{\"name\":\"Clinica Chimica Acta\",\"volume\":\" \",\"pages\":\"120534\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2026-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinica Chimica Acta\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cca.2025.120534\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinica Chimica Acta","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.cca.2025.120534","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

17β-雌二醇(E2)是一种强效的内分泌干扰化合物,其检测对环境监测和生物医学诊断都至关重要。传统的检测方法往往在灵敏度、选择性和成本效益方面存在局限性。适配体传感器利用适配体作为生物识别元件,由于其高特异性、稳定性和适应性,提供了有希望的替代方案。本文探讨了E2检测的适体传感器技术的最新进展,重点介绍了光学、电化学和基于表面增强拉曼散射(SERS)的平台。纳米材料如金纳米粒子、碳点和导电聚合物的集成显著提高了传感器的性能,实现了超低的检测限和宽的动态范围。通过利用这些创新,aptassensors为环境、食品和临床样品中的E2实时监测提供了可扩展的解决方案,为改善内分泌调节和公共卫生安全铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced aptasensor technologies for sensitive detection of 17β-Estradiol.

The detection of 17β-estradiol (E2), a potent endocrine-disrupting compound, is critical for both environmental monitoring and biomedical diagnostics. Traditional detection methods often suffer from limitations in sensitivity, selectivity, and cost-effectiveness. Aptasensors, which utilize aptamers as biorecognition elements, offer promising alternatives because of their high specificity, stability, and adaptability. This paper explores recent advancements in aptasensor technologies for E2 detection, highlighting optical, electrochemical, and surface-enhanced Raman scattering (SERS)-based platforms. The integration of nanomaterials such as gold nanoparticles, carbon dots, and conductive polymers significantly enhances sensor performance, achieving ultralow detection limits and broad dynamic ranges. By leveraging these innovations, aptasensors provide scalable solutions for real-time monitoring of E2 in environmental, food, and clinical samples, paving the way for improved endocrine regulation and public health safety.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinica Chimica Acta
Clinica Chimica Acta 医学-医学实验技术
CiteScore
10.10
自引率
2.00%
发文量
1268
审稿时长
23 days
期刊介绍: The Official Journal of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) Clinica Chimica Acta is a high-quality journal which publishes original Research Communications in the field of clinical chemistry and laboratory medicine, defined as the diagnostic application of chemistry, biochemistry, immunochemistry, biochemical aspects of hematology, toxicology, and molecular biology to the study of human disease in body fluids and cells. The objective of the journal is to publish novel information leading to a better understanding of biological mechanisms of human diseases, their prevention, diagnosis, and patient management. Reports of an applied clinical character are also welcome. Papers concerned with normal metabolic processes or with constituents of normal cells or body fluids, such as reports of experimental or clinical studies in animals, are only considered when they are clearly and directly relevant to human disease. Evaluation of commercial products have a low priority for publication, unless they are novel or represent a technological breakthrough. Studies dealing with effects of drugs and natural products and studies dealing with the redox status in various diseases are not within the journal''s scope. Development and evaluation of novel analytical methodologies where applicable to diagnostic clinical chemistry and laboratory medicine, including point-of-care testing, and topics on laboratory management and informatics will also be considered. Studies focused on emerging diagnostic technologies and (big) data analysis procedures including digitalization, mobile Health, and artificial Intelligence applied to Laboratory Medicine are also of interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信