潜在中介模型的检验、测量和结构不变性——IPCR和贝叶斯MNLFA的比较。

IF 3.9 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL
Fabian Felix Muench, Tobias Koch
{"title":"潜在中介模型的检验、测量和结构不变性——IPCR和贝叶斯MNLFA的比较。","authors":"Fabian Felix Muench, Tobias Koch","doi":"10.3758/s13428-025-02781-5","DOIUrl":null,"url":null,"abstract":"<p><p>Moderated mediation models are frequently used in psychological research to examine direct, indirect, and total effects across an external moderating variable. When these models involve latent variables, measurement invariance should be tested first to ensure that measures function equivalently across subpopulations. If measurement invariance is violated, conclusions drawn about the moderation effects can be biased. However, measurement invariance is seldom tested across the moderator variable itself, especially if it is continuous. In this paper, we present two approaches that allow testing measurement and structural invariance simultaneously and across continuous covariates. They are termed individual parameter contribution regression (IPCR; Arnold et al., Structural Equation Modeling: A Multidisciplinary Journal, 27, 613-628, 2019) and moderated nonlinear latent factor analysis (MNLFA; Bauer & Hussong, Psychological Methods, 14(2), 101-125, 2009). We showcase both approaches with empirical data of <math><mrow><mi>N</mi> <mo>=</mo> <mn>399</mn></mrow> </math> couples in the German Family Panel (Brüderl et al., 2022). We show how MNLFA can be estimated in a Bayesian framework and explain Bayesian model selection with posterior predictive model checks and leave-one-out cross-validation (Vehtari et al., Statistics and Computing, 27(5), 1413-1432, 2017). Afterwards, we present the results of a simulation study comparing IPCR and Bayesian MNLFA with regard to parameter bias. We close with a comparison of both approaches regarding the empirical analysis and the simulation study and provide recommendations for applied researchers working with latent moderated mediation models.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 9","pages":"250"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334378/pdf/","citationCount":"0","resultStr":"{\"title\":\"Testing measurement and structural invariance in latent mediation models - A comparison of IPCR and Bayesian MNLFA.\",\"authors\":\"Fabian Felix Muench, Tobias Koch\",\"doi\":\"10.3758/s13428-025-02781-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Moderated mediation models are frequently used in psychological research to examine direct, indirect, and total effects across an external moderating variable. When these models involve latent variables, measurement invariance should be tested first to ensure that measures function equivalently across subpopulations. If measurement invariance is violated, conclusions drawn about the moderation effects can be biased. However, measurement invariance is seldom tested across the moderator variable itself, especially if it is continuous. In this paper, we present two approaches that allow testing measurement and structural invariance simultaneously and across continuous covariates. They are termed individual parameter contribution regression (IPCR; Arnold et al., Structural Equation Modeling: A Multidisciplinary Journal, 27, 613-628, 2019) and moderated nonlinear latent factor analysis (MNLFA; Bauer & Hussong, Psychological Methods, 14(2), 101-125, 2009). We showcase both approaches with empirical data of <math><mrow><mi>N</mi> <mo>=</mo> <mn>399</mn></mrow> </math> couples in the German Family Panel (Brüderl et al., 2022). We show how MNLFA can be estimated in a Bayesian framework and explain Bayesian model selection with posterior predictive model checks and leave-one-out cross-validation (Vehtari et al., Statistics and Computing, 27(5), 1413-1432, 2017). Afterwards, we present the results of a simulation study comparing IPCR and Bayesian MNLFA with regard to parameter bias. We close with a comparison of both approaches regarding the empirical analysis and the simulation study and provide recommendations for applied researchers working with latent moderated mediation models.</p>\",\"PeriodicalId\":8717,\"journal\":{\"name\":\"Behavior Research Methods\",\"volume\":\"57 9\",\"pages\":\"250\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12334378/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavior Research Methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3758/s13428-025-02781-5\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-025-02781-5","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

被调节的中介模型经常用于心理学研究,以检查外部调节变量的直接、间接和总影响。当这些模型涉及潜在变量时,应该首先测试测量的不变性,以确保测量在亚种群中发挥同等作用。如果不符合测量不变性,则得出的关于调节效应的结论可能有偏倚。然而,很少跨调节变量本身测试测量不变性,特别是如果它是连续的。在本文中,我们提出了两种方法,允许测试测量和结构不变性同时和跨连续协变量。它们被称为个体参数贡献回归(IPCR;Arnold et al.,结构方程建模:多学科学报,27,613-628,2019)和调节非线性潜在因素分析(MNLFA;Bauer & Hussong,心理方法,14(2),101-125,2009)。我们在德国家庭面板中使用N = 399对夫妇的经验数据展示了这两种方法(br derl等人,2022)。我们展示了如何在贝叶斯框架中估计MNLFA,并通过后验预测模型检查和留一交叉验证来解释贝叶斯模型选择(Vehtari等人,统计与计算,27(5),1413-1432,2017)。随后,我们展示了IPCR和贝叶斯MNLFA在参数偏差方面的模拟研究结果。最后,我们比较了实证分析和模拟研究的两种方法,并为研究潜在调节中介模型的应用研究人员提供了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Testing measurement and structural invariance in latent mediation models - A comparison of IPCR and Bayesian MNLFA.

Testing measurement and structural invariance in latent mediation models - A comparison of IPCR and Bayesian MNLFA.

Testing measurement and structural invariance in latent mediation models - A comparison of IPCR and Bayesian MNLFA.

Testing measurement and structural invariance in latent mediation models - A comparison of IPCR and Bayesian MNLFA.

Moderated mediation models are frequently used in psychological research to examine direct, indirect, and total effects across an external moderating variable. When these models involve latent variables, measurement invariance should be tested first to ensure that measures function equivalently across subpopulations. If measurement invariance is violated, conclusions drawn about the moderation effects can be biased. However, measurement invariance is seldom tested across the moderator variable itself, especially if it is continuous. In this paper, we present two approaches that allow testing measurement and structural invariance simultaneously and across continuous covariates. They are termed individual parameter contribution regression (IPCR; Arnold et al., Structural Equation Modeling: A Multidisciplinary Journal, 27, 613-628, 2019) and moderated nonlinear latent factor analysis (MNLFA; Bauer & Hussong, Psychological Methods, 14(2), 101-125, 2009). We showcase both approaches with empirical data of N = 399 couples in the German Family Panel (Brüderl et al., 2022). We show how MNLFA can be estimated in a Bayesian framework and explain Bayesian model selection with posterior predictive model checks and leave-one-out cross-validation (Vehtari et al., Statistics and Computing, 27(5), 1413-1432, 2017). Afterwards, we present the results of a simulation study comparing IPCR and Bayesian MNLFA with regard to parameter bias. We close with a comparison of both approaches regarding the empirical analysis and the simulation study and provide recommendations for applied researchers working with latent moderated mediation models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信