{"title":"生命周期排放与拱顶储存木材清理火灾管理在美国西部。","authors":"Declan Johnson, Jimmy Voorhis, Stephen Porder","doi":"10.1186/s13021-025-00309-0","DOIUrl":null,"url":null,"abstract":"<div>\n \n <span>AbstractSection</span>\n Background\n <p>Climate change, fire suppression, and human encroachment contribute to increasingly intense forest fires in the Western United States, releasing hundreds of millions of metric tons (MMT) CO<sub>2</sub>/year. Proactive fire-risk reduction treatments coordinated by the US Forest Service (USFS) typically include thinning and burning (or in situ decay) of thinned products and may require thinning on ~ 28 million hectares of public and private land over the next decade. Assuming thinning of only small (~ 30 cm diameter) trees within 0.8 km of existing roads on slopes gentler than a 40% grade, this will produce ~ 1,100 MMT of thinned wood, which, if burned or left to decay, will release ~ 2000 MMT CO<sub>2</sub>. Here we evaluate the life cycle emissions of an alternative fate, burial in anoxic wood vaults. We performed a life cycle analysis (LCA) to assess potential net emissions reductions, considering site clearing, transport, site preparation and post-burial decay. We used Monte-Carlo simulations to estimate emissions uncertainty and identify key parameters influencing carbon removal efficiency.</p>\n \n <span>AbstractSection</span>\n Results\n <p>We find wood vaults will decrease emissions relative to current practice by a mean of 66% if wood is transported 100 km, and by 38% at a transport distance of 500 km. If the USFS is able to implement the proposed Wildfire Crisis Strategy, and all of the wood from thinning were buried in wood vaults within 100–500 km of the thinning sites, our results suggest these vaults would thus sequester between ~ 40–140 MMT CO<sub>2</sub>/yr over a decade. This annual figure represents ~ 6–12% of 2021 energy-related emissions in the contiguous Western United States. Harvesting thinned products only from gentler (< 20%) slopes within shorter distances from roads (304 m) would result in a greenhouse gas savings equivalent to 3–6% of 2021 Western State emissions. However, these results depend heavily on parameters related to wood decay and post-decay methane emissions that are relatively poorly constrained.</p>\n \n <span>AbstractSection</span>\n Conclusions\n <p>These results suggest wood vaults are a promising emissions-reduction strategy, but challenges remain. It is not clear that the USFS has the resources to manage the additional ~ 20 million hectares targeted for forest thinning. Biogeochemically, the importance of rates of wood decay within the vault, and the fraction of methane generated that escapes the vault, are poorly constrained parameters. Their estimation will be important for narrowing uncertainty in estimates of life cycle emissions. Nevertheless, our analysis suggests wood vaults are a promising, low-tech, ready-to-deploy emissions reduction strategy in places where forest management includes mechanical thinning and burning of wood waste residues. Wood vaults can be particularly impactful in locations that facilitate short transport distances and where biogeochemical conditions at the vault site minimize wood decay.</p>\n \n </div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"20 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335127/pdf/","citationCount":"0","resultStr":"{\"title\":\"Life cycle emissions associated with vault storage of wood cleared for fire management in the Western United States\",\"authors\":\"Declan Johnson, Jimmy Voorhis, Stephen Porder\",\"doi\":\"10.1186/s13021-025-00309-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <span>AbstractSection</span>\\n Background\\n <p>Climate change, fire suppression, and human encroachment contribute to increasingly intense forest fires in the Western United States, releasing hundreds of millions of metric tons (MMT) CO<sub>2</sub>/year. Proactive fire-risk reduction treatments coordinated by the US Forest Service (USFS) typically include thinning and burning (or in situ decay) of thinned products and may require thinning on ~ 28 million hectares of public and private land over the next decade. Assuming thinning of only small (~ 30 cm diameter) trees within 0.8 km of existing roads on slopes gentler than a 40% grade, this will produce ~ 1,100 MMT of thinned wood, which, if burned or left to decay, will release ~ 2000 MMT CO<sub>2</sub>. Here we evaluate the life cycle emissions of an alternative fate, burial in anoxic wood vaults. We performed a life cycle analysis (LCA) to assess potential net emissions reductions, considering site clearing, transport, site preparation and post-burial decay. We used Monte-Carlo simulations to estimate emissions uncertainty and identify key parameters influencing carbon removal efficiency.</p>\\n \\n <span>AbstractSection</span>\\n Results\\n <p>We find wood vaults will decrease emissions relative to current practice by a mean of 66% if wood is transported 100 km, and by 38% at a transport distance of 500 km. If the USFS is able to implement the proposed Wildfire Crisis Strategy, and all of the wood from thinning were buried in wood vaults within 100–500 km of the thinning sites, our results suggest these vaults would thus sequester between ~ 40–140 MMT CO<sub>2</sub>/yr over a decade. This annual figure represents ~ 6–12% of 2021 energy-related emissions in the contiguous Western United States. Harvesting thinned products only from gentler (< 20%) slopes within shorter distances from roads (304 m) would result in a greenhouse gas savings equivalent to 3–6% of 2021 Western State emissions. However, these results depend heavily on parameters related to wood decay and post-decay methane emissions that are relatively poorly constrained.</p>\\n \\n <span>AbstractSection</span>\\n Conclusions\\n <p>These results suggest wood vaults are a promising emissions-reduction strategy, but challenges remain. It is not clear that the USFS has the resources to manage the additional ~ 20 million hectares targeted for forest thinning. Biogeochemically, the importance of rates of wood decay within the vault, and the fraction of methane generated that escapes the vault, are poorly constrained parameters. Their estimation will be important for narrowing uncertainty in estimates of life cycle emissions. Nevertheless, our analysis suggests wood vaults are a promising, low-tech, ready-to-deploy emissions reduction strategy in places where forest management includes mechanical thinning and burning of wood waste residues. Wood vaults can be particularly impactful in locations that facilitate short transport distances and where biogeochemical conditions at the vault site minimize wood decay.</p>\\n \\n </div>\",\"PeriodicalId\":505,\"journal\":{\"name\":\"Carbon Balance and Management\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335127/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Balance and Management\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13021-025-00309-0\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-025-00309-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Life cycle emissions associated with vault storage of wood cleared for fire management in the Western United States
AbstractSection
Background
Climate change, fire suppression, and human encroachment contribute to increasingly intense forest fires in the Western United States, releasing hundreds of millions of metric tons (MMT) CO2/year. Proactive fire-risk reduction treatments coordinated by the US Forest Service (USFS) typically include thinning and burning (or in situ decay) of thinned products and may require thinning on ~ 28 million hectares of public and private land over the next decade. Assuming thinning of only small (~ 30 cm diameter) trees within 0.8 km of existing roads on slopes gentler than a 40% grade, this will produce ~ 1,100 MMT of thinned wood, which, if burned or left to decay, will release ~ 2000 MMT CO2. Here we evaluate the life cycle emissions of an alternative fate, burial in anoxic wood vaults. We performed a life cycle analysis (LCA) to assess potential net emissions reductions, considering site clearing, transport, site preparation and post-burial decay. We used Monte-Carlo simulations to estimate emissions uncertainty and identify key parameters influencing carbon removal efficiency.
AbstractSection
Results
We find wood vaults will decrease emissions relative to current practice by a mean of 66% if wood is transported 100 km, and by 38% at a transport distance of 500 km. If the USFS is able to implement the proposed Wildfire Crisis Strategy, and all of the wood from thinning were buried in wood vaults within 100–500 km of the thinning sites, our results suggest these vaults would thus sequester between ~ 40–140 MMT CO2/yr over a decade. This annual figure represents ~ 6–12% of 2021 energy-related emissions in the contiguous Western United States. Harvesting thinned products only from gentler (< 20%) slopes within shorter distances from roads (304 m) would result in a greenhouse gas savings equivalent to 3–6% of 2021 Western State emissions. However, these results depend heavily on parameters related to wood decay and post-decay methane emissions that are relatively poorly constrained.
AbstractSection
Conclusions
These results suggest wood vaults are a promising emissions-reduction strategy, but challenges remain. It is not clear that the USFS has the resources to manage the additional ~ 20 million hectares targeted for forest thinning. Biogeochemically, the importance of rates of wood decay within the vault, and the fraction of methane generated that escapes the vault, are poorly constrained parameters. Their estimation will be important for narrowing uncertainty in estimates of life cycle emissions. Nevertheless, our analysis suggests wood vaults are a promising, low-tech, ready-to-deploy emissions reduction strategy in places where forest management includes mechanical thinning and burning of wood waste residues. Wood vaults can be particularly impactful in locations that facilitate short transport distances and where biogeochemical conditions at the vault site minimize wood decay.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.