{"title":"食品中转基因生物检测的最新进展:从转基因到基因组编辑作物。","authors":"Zahia Brara, Khodir Madani, Joana Costa, Lamia Taouzinet, Ouarda Djaoudene, Meriem Amrane-Abider, Hind Bougherra, Khokha Mouhoubi, Nassim Brahimi, Cilia Bouiche, Zoubeida Meghlaoui, Isabel Mafra","doi":"10.1111/1541-4337.70243","DOIUrl":null,"url":null,"abstract":"<p><p>Progresses in biotechnology, particularly the introduction of genetically modified organisms (GMO) and, more recently, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-mediated genome editing, have revolutionized agriculture, prompting the need for robust food-labeling regulations. To meet the GMO legislation requirements, analytical methods for the reliable detection of GMO in food, based either on DNA or protein markers, have been constantly proposed. DNA-based methods relying on polymerase chain reaction (PCR) technologies are the most popular for this purpose, with real-time PCR being the gold standard for GMO quantification. Lately, digital PCR has proved to be a suitable alternative to real-time PCR. The development of rapid, low-cost, user-friendly, and field-deployable tools to quickly generate data on the presence of GMO is crucial, especially with the rapid increase in their complexity and the number of events entering the food market. In this context, alternative technologies based on isothermal amplification and genosensors have emerged. The immunochemical assays in the formats of microtiter plates, lateral flow devices, and immunosensors still occupy a relevant role in GMO detection. Finally, next generation sequencing technologies stand up as tools to face the challenges of detecting unauthorized GMO and genome-edited crops. This review intends to provide a comprehensive overview on the methodologies available for the detection, identification, and quantification of GMO, including gene-edited mutants in foods, while discussing their advantages and limitations, with focus on the latest advances.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 5","pages":"e70243"},"PeriodicalIF":14.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current Progress on the Detection of Genetically Modified Organisms in Food: From Transgenic Towards Genome-Edited Crops.\",\"authors\":\"Zahia Brara, Khodir Madani, Joana Costa, Lamia Taouzinet, Ouarda Djaoudene, Meriem Amrane-Abider, Hind Bougherra, Khokha Mouhoubi, Nassim Brahimi, Cilia Bouiche, Zoubeida Meghlaoui, Isabel Mafra\",\"doi\":\"10.1111/1541-4337.70243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Progresses in biotechnology, particularly the introduction of genetically modified organisms (GMO) and, more recently, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-mediated genome editing, have revolutionized agriculture, prompting the need for robust food-labeling regulations. To meet the GMO legislation requirements, analytical methods for the reliable detection of GMO in food, based either on DNA or protein markers, have been constantly proposed. DNA-based methods relying on polymerase chain reaction (PCR) technologies are the most popular for this purpose, with real-time PCR being the gold standard for GMO quantification. Lately, digital PCR has proved to be a suitable alternative to real-time PCR. The development of rapid, low-cost, user-friendly, and field-deployable tools to quickly generate data on the presence of GMO is crucial, especially with the rapid increase in their complexity and the number of events entering the food market. In this context, alternative technologies based on isothermal amplification and genosensors have emerged. The immunochemical assays in the formats of microtiter plates, lateral flow devices, and immunosensors still occupy a relevant role in GMO detection. Finally, next generation sequencing technologies stand up as tools to face the challenges of detecting unauthorized GMO and genome-edited crops. This review intends to provide a comprehensive overview on the methodologies available for the detection, identification, and quantification of GMO, including gene-edited mutants in foods, while discussing their advantages and limitations, with focus on the latest advances.</p>\",\"PeriodicalId\":155,\"journal\":{\"name\":\"Comprehensive Reviews in Food Science and Food Safety\",\"volume\":\"24 5\",\"pages\":\"e70243\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comprehensive Reviews in Food Science and Food Safety\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1541-4337.70243\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Reviews in Food Science and Food Safety","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1541-4337.70243","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Current Progress on the Detection of Genetically Modified Organisms in Food: From Transgenic Towards Genome-Edited Crops.
Progresses in biotechnology, particularly the introduction of genetically modified organisms (GMO) and, more recently, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-mediated genome editing, have revolutionized agriculture, prompting the need for robust food-labeling regulations. To meet the GMO legislation requirements, analytical methods for the reliable detection of GMO in food, based either on DNA or protein markers, have been constantly proposed. DNA-based methods relying on polymerase chain reaction (PCR) technologies are the most popular for this purpose, with real-time PCR being the gold standard for GMO quantification. Lately, digital PCR has proved to be a suitable alternative to real-time PCR. The development of rapid, low-cost, user-friendly, and field-deployable tools to quickly generate data on the presence of GMO is crucial, especially with the rapid increase in their complexity and the number of events entering the food market. In this context, alternative technologies based on isothermal amplification and genosensors have emerged. The immunochemical assays in the formats of microtiter plates, lateral flow devices, and immunosensors still occupy a relevant role in GMO detection. Finally, next generation sequencing technologies stand up as tools to face the challenges of detecting unauthorized GMO and genome-edited crops. This review intends to provide a comprehensive overview on the methodologies available for the detection, identification, and quantification of GMO, including gene-edited mutants in foods, while discussing their advantages and limitations, with focus on the latest advances.
期刊介绍:
Comprehensive Reviews in Food Science and Food Safety (CRFSFS) is an online peer-reviewed journal established in 2002. It aims to provide scientists with unique and comprehensive reviews covering various aspects of food science and technology.
CRFSFS publishes in-depth reviews addressing the chemical, microbiological, physical, sensory, and nutritional properties of foods, as well as food processing, engineering, analytical methods, and packaging. Manuscripts should contribute new insights and recommendations to the scientific knowledge on the topic. The journal prioritizes recent developments and encourages critical assessment of experimental design and interpretation of results.
Topics related to food safety, such as preventive controls, ingredient contaminants, storage, food authenticity, and adulteration, are considered. Reviews on food hazards must demonstrate validity and reliability in real food systems, not just in model systems. Additionally, reviews on nutritional properties should provide a realistic perspective on how foods influence health, considering processing and storage effects on bioactivity.
The journal also accepts reviews on consumer behavior, risk assessment, food regulations, and post-harvest physiology. Authors are encouraged to consult the Editor in Chief before submission to ensure topic suitability. Systematic reviews and meta-analyses on analytical and sensory methods, quality control, and food safety approaches are welcomed, with authors advised to follow IFIS Good review practice guidelines.