{"title":"一种可调的胺功能化多孔二氧化硅催化剂用于常压下CO2转化为循环有机碳酸盐。","authors":"Twinkle Gorai, Chandragopal Thanasekar, Pawan Kumar, Athira Babu, Sreekumar Kurungot, C.P. Vinod","doi":"10.1002/chem.202500873","DOIUrl":null,"url":null,"abstract":"<p>A silica catalyst with characteristic features of broad pore size distribution, large pore width and tunable basic sites was synthesized by a one-step green co-condensation synthesis method analogous to SBA-15 synthesis. The surface chemical features of the above catalyst were explored by XPS, N<sub>2</sub> and CO<sub>2</sub> adsorption and desorption experiments. The catalyst showed 90% conversion of styrene oxide (SO) with nearly complete selectivity toward styrene carbonate (SC) in 7 hours under a solvent-free condition at a temperature of 120 °C with the aid of co-catalyst tetrabutylammonium bromide (TBAB). Moreover, the catalyst demonstrates versatility with various epoxide substrates, providing valuable insights into the cycloaddition reaction under ambient pressure conditions involving carbon dioxide. The mechanistic details of the catalytic conversion were investigated by the in-situ DRIFT studies and reported here.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":"31 47","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Tunable, Amine-Functionalized Porous Silica Catalyst for CO2 Transformation into Cyclic Organic Carbonates at Atmospheric Pressure\",\"authors\":\"Twinkle Gorai, Chandragopal Thanasekar, Pawan Kumar, Athira Babu, Sreekumar Kurungot, C.P. Vinod\",\"doi\":\"10.1002/chem.202500873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A silica catalyst with characteristic features of broad pore size distribution, large pore width and tunable basic sites was synthesized by a one-step green co-condensation synthesis method analogous to SBA-15 synthesis. The surface chemical features of the above catalyst were explored by XPS, N<sub>2</sub> and CO<sub>2</sub> adsorption and desorption experiments. The catalyst showed 90% conversion of styrene oxide (SO) with nearly complete selectivity toward styrene carbonate (SC) in 7 hours under a solvent-free condition at a temperature of 120 °C with the aid of co-catalyst tetrabutylammonium bromide (TBAB). Moreover, the catalyst demonstrates versatility with various epoxide substrates, providing valuable insights into the cycloaddition reaction under ambient pressure conditions involving carbon dioxide. The mechanistic details of the catalytic conversion were investigated by the in-situ DRIFT studies and reported here.</p>\",\"PeriodicalId\":144,\"journal\":{\"name\":\"Chemistry - A European Journal\",\"volume\":\"31 47\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - A European Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202500873\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202500873","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Tunable, Amine-Functionalized Porous Silica Catalyst for CO2 Transformation into Cyclic Organic Carbonates at Atmospheric Pressure
A silica catalyst with characteristic features of broad pore size distribution, large pore width and tunable basic sites was synthesized by a one-step green co-condensation synthesis method analogous to SBA-15 synthesis. The surface chemical features of the above catalyst were explored by XPS, N2 and CO2 adsorption and desorption experiments. The catalyst showed 90% conversion of styrene oxide (SO) with nearly complete selectivity toward styrene carbonate (SC) in 7 hours under a solvent-free condition at a temperature of 120 °C with the aid of co-catalyst tetrabutylammonium bromide (TBAB). Moreover, the catalyst demonstrates versatility with various epoxide substrates, providing valuable insights into the cycloaddition reaction under ambient pressure conditions involving carbon dioxide. The mechanistic details of the catalytic conversion were investigated by the in-situ DRIFT studies and reported here.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.