{"title":"将农业食品垃圾转化为价值:下一代抗性淀粉生产的可持续方法。","authors":"Shikha Pandhi, Dipendra Kumar Mahato, Anju Kurian, Surabhi Pandey, Abhishek Thamarai, Vishwas Gaur, Madhu Kamle, Amritesh Chandra Shukla, Pradeep Kumar","doi":"10.1016/j.biortech.2025.133090","DOIUrl":null,"url":null,"abstract":"<p><p>Agri-food waste, which includes organic materials discarded throughout the food supply chain from agricultural production and post-harvest handling to processing, distribution, and consumption, poses significant environmental and economic challenges due to resource underutilization and disposal issues. However, the valorization of these residues into value-added products, particularly resistant starch (RS), offers a sustainable solution. RS, a non-digestible carbohydrate with prebiotic properties, provides numerous health benefits, including improved gut health, blood sugar regulation, and enhanced satiety. Various studies have explored innovative methods for RS extraction from agricultural by-products such as potato peels, rice bran, banana peels, and chestnut starch. Techniques such as enzymatic hydrolysis, ultrasound-assisted extraction, and thermal processing have demonstrated high efficiency in producing RS while maintaining its functional properties. Additionally, advancements in artificial intelligence (AI), big data, and machine learning are playing a crucial role in optimizing waste valorization processes. AI-driven technologies enable precise classification and separation of food waste, improving the efficiency of extraction and processing techniques. The integration of smart systems, such as IoT-based waste classification, further enhances resource recovery. As research and technological advancements continue, the large-scale application of these sustainable extraction and processing methods is expected to support a circular economy, reduce food waste, and provide functional food ingredients for the food industry.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"133090"},"PeriodicalIF":9.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transforming agri-food waste into value: Sustainable approaches for next-generation resistant starch production.\",\"authors\":\"Shikha Pandhi, Dipendra Kumar Mahato, Anju Kurian, Surabhi Pandey, Abhishek Thamarai, Vishwas Gaur, Madhu Kamle, Amritesh Chandra Shukla, Pradeep Kumar\",\"doi\":\"10.1016/j.biortech.2025.133090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Agri-food waste, which includes organic materials discarded throughout the food supply chain from agricultural production and post-harvest handling to processing, distribution, and consumption, poses significant environmental and economic challenges due to resource underutilization and disposal issues. However, the valorization of these residues into value-added products, particularly resistant starch (RS), offers a sustainable solution. RS, a non-digestible carbohydrate with prebiotic properties, provides numerous health benefits, including improved gut health, blood sugar regulation, and enhanced satiety. Various studies have explored innovative methods for RS extraction from agricultural by-products such as potato peels, rice bran, banana peels, and chestnut starch. Techniques such as enzymatic hydrolysis, ultrasound-assisted extraction, and thermal processing have demonstrated high efficiency in producing RS while maintaining its functional properties. Additionally, advancements in artificial intelligence (AI), big data, and machine learning are playing a crucial role in optimizing waste valorization processes. AI-driven technologies enable precise classification and separation of food waste, improving the efficiency of extraction and processing techniques. The integration of smart systems, such as IoT-based waste classification, further enhances resource recovery. As research and technological advancements continue, the large-scale application of these sustainable extraction and processing methods is expected to support a circular economy, reduce food waste, and provide functional food ingredients for the food industry.</p>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\" \",\"pages\":\"133090\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biortech.2025.133090\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.133090","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Transforming agri-food waste into value: Sustainable approaches for next-generation resistant starch production.
Agri-food waste, which includes organic materials discarded throughout the food supply chain from agricultural production and post-harvest handling to processing, distribution, and consumption, poses significant environmental and economic challenges due to resource underutilization and disposal issues. However, the valorization of these residues into value-added products, particularly resistant starch (RS), offers a sustainable solution. RS, a non-digestible carbohydrate with prebiotic properties, provides numerous health benefits, including improved gut health, blood sugar regulation, and enhanced satiety. Various studies have explored innovative methods for RS extraction from agricultural by-products such as potato peels, rice bran, banana peels, and chestnut starch. Techniques such as enzymatic hydrolysis, ultrasound-assisted extraction, and thermal processing have demonstrated high efficiency in producing RS while maintaining its functional properties. Additionally, advancements in artificial intelligence (AI), big data, and machine learning are playing a crucial role in optimizing waste valorization processes. AI-driven technologies enable precise classification and separation of food waste, improving the efficiency of extraction and processing techniques. The integration of smart systems, such as IoT-based waste classification, further enhances resource recovery. As research and technological advancements continue, the large-scale application of these sustainable extraction and processing methods is expected to support a circular economy, reduce food waste, and provide functional food ingredients for the food industry.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.