{"title":"平衡氮代谢有效驱动atatatus链霉菌抗结核ilamycin生物合成。","authors":"Gaofan Zheng, Weiyan Zhou, Yingyue Gui, Yuxi Jiang, Yunfei Zhu, Junying Ma, Jianhua Ju, Xiujuan Xin, Baoli Li, Ruida Wang, Ming Zhao, Faliang An","doi":"10.1016/j.biortech.2025.133099","DOIUrl":null,"url":null,"abstract":"<p><p>The deep-sea-derived Streptomyces atratus SCSIO ZH16 is a promising host for producing nanomole-level anti-tuberculosis ilamycins. However, limited research on regulating the ilamycins biosynthetic gene cluster (BGC) has hindered industrial production. Our previous study found that nitrogen metabolism-related genes were upregulated in strains with enhanced ilamycins production. Since amino acids from nitrogen metabolism are key precursors, we aimed to optimize ilamycins production by balancing BGC expression and nitrogen metabolism. Using RNA-seq and hierarchical clustering, we identified the native promoter P<sub>20605</sub> and its modified version P<sub>20605-400</sub>, which regulate the positive regulator IlaB in ilamycins BGC. To synchronously boost ilamycins synthesis and precursor supply, we analyzed P<sub>20605</sub>'s function via bioinformatics and validated it using an indigoidine biosynthetic model. The engineered strain ΔilaR::P<sub>20605-400</sub>-ilaB::P<sub>ermE*</sub>-phoP achieved over a dozen-fold increase in ilamycins yield. Fermentation was successfully scaled up in 5-L and 500-L bioreactors, reaching titers of 2,546.4 mg/L and 1,993.9 mg/L, respectively, significantly surpassing previously reported yields. This study highlights the industrial potential of ilamycins and provides insights into enhancing peptide compound production in Streptomyces.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":" ","pages":"133099"},"PeriodicalIF":9.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balancing nitrogen metabolism to efficiently drive anti-tuberculosis ilamycins biosynthesis in Streptomyces atratus.\",\"authors\":\"Gaofan Zheng, Weiyan Zhou, Yingyue Gui, Yuxi Jiang, Yunfei Zhu, Junying Ma, Jianhua Ju, Xiujuan Xin, Baoli Li, Ruida Wang, Ming Zhao, Faliang An\",\"doi\":\"10.1016/j.biortech.2025.133099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The deep-sea-derived Streptomyces atratus SCSIO ZH16 is a promising host for producing nanomole-level anti-tuberculosis ilamycins. However, limited research on regulating the ilamycins biosynthetic gene cluster (BGC) has hindered industrial production. Our previous study found that nitrogen metabolism-related genes were upregulated in strains with enhanced ilamycins production. Since amino acids from nitrogen metabolism are key precursors, we aimed to optimize ilamycins production by balancing BGC expression and nitrogen metabolism. Using RNA-seq and hierarchical clustering, we identified the native promoter P<sub>20605</sub> and its modified version P<sub>20605-400</sub>, which regulate the positive regulator IlaB in ilamycins BGC. To synchronously boost ilamycins synthesis and precursor supply, we analyzed P<sub>20605</sub>'s function via bioinformatics and validated it using an indigoidine biosynthetic model. The engineered strain ΔilaR::P<sub>20605-400</sub>-ilaB::P<sub>ermE*</sub>-phoP achieved over a dozen-fold increase in ilamycins yield. Fermentation was successfully scaled up in 5-L and 500-L bioreactors, reaching titers of 2,546.4 mg/L and 1,993.9 mg/L, respectively, significantly surpassing previously reported yields. This study highlights the industrial potential of ilamycins and provides insights into enhancing peptide compound production in Streptomyces.</p>\",\"PeriodicalId\":258,\"journal\":{\"name\":\"Bioresource Technology\",\"volume\":\" \",\"pages\":\"133099\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biortech.2025.133099\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.133099","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Balancing nitrogen metabolism to efficiently drive anti-tuberculosis ilamycins biosynthesis in Streptomyces atratus.
The deep-sea-derived Streptomyces atratus SCSIO ZH16 is a promising host for producing nanomole-level anti-tuberculosis ilamycins. However, limited research on regulating the ilamycins biosynthetic gene cluster (BGC) has hindered industrial production. Our previous study found that nitrogen metabolism-related genes were upregulated in strains with enhanced ilamycins production. Since amino acids from nitrogen metabolism are key precursors, we aimed to optimize ilamycins production by balancing BGC expression and nitrogen metabolism. Using RNA-seq and hierarchical clustering, we identified the native promoter P20605 and its modified version P20605-400, which regulate the positive regulator IlaB in ilamycins BGC. To synchronously boost ilamycins synthesis and precursor supply, we analyzed P20605's function via bioinformatics and validated it using an indigoidine biosynthetic model. The engineered strain ΔilaR::P20605-400-ilaB::PermE*-phoP achieved over a dozen-fold increase in ilamycins yield. Fermentation was successfully scaled up in 5-L and 500-L bioreactors, reaching titers of 2,546.4 mg/L and 1,993.9 mg/L, respectively, significantly surpassing previously reported yields. This study highlights the industrial potential of ilamycins and provides insights into enhancing peptide compound production in Streptomyces.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.