用于电子人工韧带的仿生全天候强、韧、抗疲劳复合有机水凝胶。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-08-08 DOI:10.1002/smll.202504139
Gehong Su,Xiaotian Zhang,Yaping Zhou,Zhishuo Chen,Jin Feng,Yue Xu,Yongpeng Zhao,Chun Wu,Zhiwei Lu,Mengmeng Sun,Tao Zhou,Hanbing Rao
{"title":"用于电子人工韧带的仿生全天候强、韧、抗疲劳复合有机水凝胶。","authors":"Gehong Su,Xiaotian Zhang,Yaping Zhou,Zhishuo Chen,Jin Feng,Yue Xu,Yongpeng Zhao,Chun Wu,Zhiwei Lu,Mengmeng Sun,Tao Zhou,Hanbing Rao","doi":"10.1002/smll.202504139","DOIUrl":null,"url":null,"abstract":"Gel materials have tremendous potential for application in future electronics and robotics due to their intriguing merits, like flexibility and biocompatibility. Nonetheless, conventional hydrogels' limited mechanical property and functionality have remarkably impeded their practical applications. Drawing inspirations from hierarchical anisotropic composite structure of natural hard biomaterials, this study proposes a freezing-casting assistant salting-out and solvent displacement with polyol strategy for the fabrication of composite organohydrogels with all-weather strong, tough, and fatigue-resistant mechanical features and functionalities (environmental stability and conductivity). By combining the hierarchical anisotropic fibrous microstructure with high crystallinity and abundant polymer-solvent interactions, the resulting organohydrogel displays exceptional stiffness (8.74 MPa), strength (21.20 MPa), stretchability (1556%), toughness (184.26 MJ m-3), fracture energy (768.3 kJ m-2), and fatigue threshold (7.86 kJ m-2). More importantly, the mechanical performances and conductivity of the gel are well-maintained at both cold and hot conditions, thus guaranteeing the application feasibility of the gel in extreme conditions. These intriguing merits enable the gel to exhibit superior potential in cutting-edge load-bearing applications, like electronic artificial ligaments. Therefore, this study presents a model approach that extends the fundamental design principles of natural biomaterials to engineer composite gels with synergistic mechanical and functional enhancements.","PeriodicalId":228,"journal":{"name":"Small","volume":"52 1","pages":"e04139"},"PeriodicalIF":12.1000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomimetic All-Weather Strong, Tough, and Fatigue-Resistant Composite Organohydrogels for Electronic Artificial Ligaments.\",\"authors\":\"Gehong Su,Xiaotian Zhang,Yaping Zhou,Zhishuo Chen,Jin Feng,Yue Xu,Yongpeng Zhao,Chun Wu,Zhiwei Lu,Mengmeng Sun,Tao Zhou,Hanbing Rao\",\"doi\":\"10.1002/smll.202504139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gel materials have tremendous potential for application in future electronics and robotics due to their intriguing merits, like flexibility and biocompatibility. Nonetheless, conventional hydrogels' limited mechanical property and functionality have remarkably impeded their practical applications. Drawing inspirations from hierarchical anisotropic composite structure of natural hard biomaterials, this study proposes a freezing-casting assistant salting-out and solvent displacement with polyol strategy for the fabrication of composite organohydrogels with all-weather strong, tough, and fatigue-resistant mechanical features and functionalities (environmental stability and conductivity). By combining the hierarchical anisotropic fibrous microstructure with high crystallinity and abundant polymer-solvent interactions, the resulting organohydrogel displays exceptional stiffness (8.74 MPa), strength (21.20 MPa), stretchability (1556%), toughness (184.26 MJ m-3), fracture energy (768.3 kJ m-2), and fatigue threshold (7.86 kJ m-2). More importantly, the mechanical performances and conductivity of the gel are well-maintained at both cold and hot conditions, thus guaranteeing the application feasibility of the gel in extreme conditions. These intriguing merits enable the gel to exhibit superior potential in cutting-edge load-bearing applications, like electronic artificial ligaments. Therefore, this study presents a model approach that extends the fundamental design principles of natural biomaterials to engineer composite gels with synergistic mechanical and functional enhancements.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"52 1\",\"pages\":\"e04139\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202504139\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202504139","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

凝胶材料由于其柔韧性和生物相容性等优点,在未来的电子和机器人领域具有巨大的应用潜力。然而,传统水凝胶有限的机械性能和功能极大地阻碍了它们的实际应用。从天然硬质生物材料的分层各向异性复合结构中汲取灵感,本研究提出了一种冷冻铸造辅助盐析和多元醇溶剂置换策略,用于制造具有全天候强、韧、耐疲劳机械特性和功能(环境稳定性和导电性)的复合有机水凝胶。通过结合分层各向异性纤维微观结构、高结晶度和丰富的聚合物-溶剂相互作用,得到的有机水凝胶具有优异的刚度(8.74 MPa)、强度(21.20 MPa)、拉伸性(1556%)、韧性(184.26 MJ -3)、断裂能(768.3 kJ -2)和疲劳阈值(7.86 kJ -2)。更重要的是,无论在冷热条件下,凝胶的力学性能和导电性都得到了很好的保持,从而保证了凝胶在极端条件下的应用可行性。这些有趣的优点使凝胶在尖端承重应用中表现出卓越的潜力,如电子人工韧带。因此,本研究提出了一种模型方法,将天然生物材料的基本设计原则扩展到具有协同力学和功能增强的工程复合凝胶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biomimetic All-Weather Strong, Tough, and Fatigue-Resistant Composite Organohydrogels for Electronic Artificial Ligaments.
Gel materials have tremendous potential for application in future electronics and robotics due to their intriguing merits, like flexibility and biocompatibility. Nonetheless, conventional hydrogels' limited mechanical property and functionality have remarkably impeded their practical applications. Drawing inspirations from hierarchical anisotropic composite structure of natural hard biomaterials, this study proposes a freezing-casting assistant salting-out and solvent displacement with polyol strategy for the fabrication of composite organohydrogels with all-weather strong, tough, and fatigue-resistant mechanical features and functionalities (environmental stability and conductivity). By combining the hierarchical anisotropic fibrous microstructure with high crystallinity and abundant polymer-solvent interactions, the resulting organohydrogel displays exceptional stiffness (8.74 MPa), strength (21.20 MPa), stretchability (1556%), toughness (184.26 MJ m-3), fracture energy (768.3 kJ m-2), and fatigue threshold (7.86 kJ m-2). More importantly, the mechanical performances and conductivity of the gel are well-maintained at both cold and hot conditions, thus guaranteeing the application feasibility of the gel in extreme conditions. These intriguing merits enable the gel to exhibit superior potential in cutting-edge load-bearing applications, like electronic artificial ligaments. Therefore, this study presents a model approach that extends the fundamental design principles of natural biomaterials to engineer composite gels with synergistic mechanical and functional enhancements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信