Hannah C. Lloyd , Yuli Li , N. Connor Payne , Zhenguang Zhao , Wenqing Xu , Alena Kroupova , David Zollman , Tengfang Long , Farah Kabir , Mei Chen , Rebecca Freeman , Ethan Yang Feng , Sarah Y. Xi , Ya-Chieh Hsu , Alessio Ciulli , Ralph Mazitschek , Christina M. Woo
{"title":"内源性小脑底物的检测和富集方法","authors":"Hannah C. Lloyd , Yuli Li , N. Connor Payne , Zhenguang Zhao , Wenqing Xu , Alena Kroupova , David Zollman , Tengfang Long , Farah Kabir , Mei Chen , Rebecca Freeman , Ethan Yang Feng , Sarah Y. Xi , Ya-Chieh Hsu , Alessio Ciulli , Ralph Mazitschek , Christina M. Woo","doi":"10.1016/j.chembiol.2025.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>C-terminal cyclic imides are posttranslational modifications (PTMs) on proteins that are recognized and removed by the E3 ligase substrate adapter cereblon (CRBN). Despite the observation of these modifications across the proteome by mass spectrometry-based proteomics, an orthogonal and generalizable method to visualize the C-terminal cyclic imide would enhance detection, sensitivity, and throughput of endogenous CRBN substrate characterization. Here, we develop an antibody-like reagent, termed “cerebody,” for visualizing and enriching C-terminal cyclic imide-modified proteins. We describe the engineering of CRBN derivatives to produce cerebody and use it to identify CRBN substrates by western blot and enrichment from whole-cell and tissue lysates. CRBN substrates identified by cerebody enrichment are mapped, validated, and further characterized for dependence on the C-terminal cyclic imide modification. These methods will accelerate the characterization of endogenous CRBN substrates and their regulation.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 8","pages":"Pages 1028-1041.e13"},"PeriodicalIF":7.2000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method for the detection and enrichment of endogenous cereblon substrates\",\"authors\":\"Hannah C. Lloyd , Yuli Li , N. Connor Payne , Zhenguang Zhao , Wenqing Xu , Alena Kroupova , David Zollman , Tengfang Long , Farah Kabir , Mei Chen , Rebecca Freeman , Ethan Yang Feng , Sarah Y. Xi , Ya-Chieh Hsu , Alessio Ciulli , Ralph Mazitschek , Christina M. Woo\",\"doi\":\"10.1016/j.chembiol.2025.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>C-terminal cyclic imides are posttranslational modifications (PTMs) on proteins that are recognized and removed by the E3 ligase substrate adapter cereblon (CRBN). Despite the observation of these modifications across the proteome by mass spectrometry-based proteomics, an orthogonal and generalizable method to visualize the C-terminal cyclic imide would enhance detection, sensitivity, and throughput of endogenous CRBN substrate characterization. Here, we develop an antibody-like reagent, termed “cerebody,” for visualizing and enriching C-terminal cyclic imide-modified proteins. We describe the engineering of CRBN derivatives to produce cerebody and use it to identify CRBN substrates by western blot and enrichment from whole-cell and tissue lysates. CRBN substrates identified by cerebody enrichment are mapped, validated, and further characterized for dependence on the C-terminal cyclic imide modification. These methods will accelerate the characterization of endogenous CRBN substrates and their regulation.</div></div>\",\"PeriodicalId\":265,\"journal\":{\"name\":\"Cell Chemical Biology\",\"volume\":\"32 8\",\"pages\":\"Pages 1028-1041.e13\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451945625002259\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451945625002259","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A method for the detection and enrichment of endogenous cereblon substrates
C-terminal cyclic imides are posttranslational modifications (PTMs) on proteins that are recognized and removed by the E3 ligase substrate adapter cereblon (CRBN). Despite the observation of these modifications across the proteome by mass spectrometry-based proteomics, an orthogonal and generalizable method to visualize the C-terminal cyclic imide would enhance detection, sensitivity, and throughput of endogenous CRBN substrate characterization. Here, we develop an antibody-like reagent, termed “cerebody,” for visualizing and enriching C-terminal cyclic imide-modified proteins. We describe the engineering of CRBN derivatives to produce cerebody and use it to identify CRBN substrates by western blot and enrichment from whole-cell and tissue lysates. CRBN substrates identified by cerebody enrichment are mapped, validated, and further characterized for dependence on the C-terminal cyclic imide modification. These methods will accelerate the characterization of endogenous CRBN substrates and their regulation.
Cell Chemical BiologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
14.70
自引率
2.30%
发文量
143
期刊介绍:
Cell Chemical Biology, a Cell Press journal established in 1994 as Chemistry & Biology, focuses on publishing crucial advances in chemical biology research with broad appeal to our diverse community, spanning basic scientists to clinicians. Pioneering investigations at the chemistry-biology interface, the journal fosters collaboration between these disciplines. We encourage submissions providing significant conceptual advancements of broad interest across chemical, biological, clinical, and related fields. Particularly sought are articles utilizing chemical tools to perturb, visualize, and measure biological systems, offering unique insights into molecular mechanisms, disease biology, and therapeutics.