学习物理和时间依赖性:通过Kolmogorov-Arnold注意力网络的水分配系统的实时建模

IF 11.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Zekun Zou, Zhihong Long, Gang Xu, Raziyeh Farmani, Tingchao Yu, Shipeng Chu
{"title":"学习物理和时间依赖性:通过Kolmogorov-Arnold注意力网络的水分配系统的实时建模","authors":"Zekun Zou, Zhihong Long, Gang Xu, Raziyeh Farmani, Tingchao Yu, Shipeng Chu","doi":"10.1038/s41545-025-00505-y","DOIUrl":null,"url":null,"abstract":"<p>Real-time modeling is vital for the intelligent management of urban water distribution systems (WDSs), enabling proactive decision-making, rapid anomaly detection, and efficient operational control. In comparison with traditional mechanistic simulators, data-driven models offer faster computation and reduced calibration demands, making them more suitable for real-time applications. However, existing models often accumulate long-term prediction errors and fail to capture the strong temporal dependencies in measured time series. To address these challenges, this study proposes the Kolmogorov–Arnold Attention Network for the real-time modeling of WDSs (KANSA), which combines Kolmogorov–Arnold Networks with attention mechanisms to extract temporal dependency features through bidirectional spatiotemporal processing. Additionally, a multi-equation soft-constraint formulation embeds mass and energy conservation laws into the loss function, mitigating cumulative errors and enhancing physical consistency. Evaluations on a benchmark network and a real-world system demonstrate that KANSA achieves high-accuracy real-time estimation and pattern fidelity while maintaining engineering-grade hydraulic balance.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"289 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning physics and temporal dependencies: real-time modeling of water distribution systems via Kolmogorov–Arnold attention networks\",\"authors\":\"Zekun Zou, Zhihong Long, Gang Xu, Raziyeh Farmani, Tingchao Yu, Shipeng Chu\",\"doi\":\"10.1038/s41545-025-00505-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Real-time modeling is vital for the intelligent management of urban water distribution systems (WDSs), enabling proactive decision-making, rapid anomaly detection, and efficient operational control. In comparison with traditional mechanistic simulators, data-driven models offer faster computation and reduced calibration demands, making them more suitable for real-time applications. However, existing models often accumulate long-term prediction errors and fail to capture the strong temporal dependencies in measured time series. To address these challenges, this study proposes the Kolmogorov–Arnold Attention Network for the real-time modeling of WDSs (KANSA), which combines Kolmogorov–Arnold Networks with attention mechanisms to extract temporal dependency features through bidirectional spatiotemporal processing. Additionally, a multi-equation soft-constraint formulation embeds mass and energy conservation laws into the loss function, mitigating cumulative errors and enhancing physical consistency. Evaluations on a benchmark network and a real-world system demonstrate that KANSA achieves high-accuracy real-time estimation and pattern fidelity while maintaining engineering-grade hydraulic balance.</p>\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":\"289 1\",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41545-025-00505-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00505-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

实时建模对于城市配水系统(WDSs)的智能管理至关重要,可以实现主动决策、快速异常检测和有效的运行控制。与传统的机械模拟器相比,数据驱动模型提供了更快的计算和更少的校准需求,使其更适合实时应用。然而,现有模型往往积累了长期预测误差,无法捕捉到测量时间序列中较强的时间依赖性。为了解决这些问题,本研究提出了Kolmogorov-Arnold注意力网络用于wds的实时建模(KANSA),该网络将Kolmogorov-Arnold网络与注意机制相结合,通过双向时空处理提取时间依赖性特征。此外,多方程软约束公式将质量和能量守恒定律嵌入到损失函数中,减轻了累积误差并增强了物理一致性。对基准网络和实际系统的评估表明,KANSA在保持工程级水力平衡的同时实现了高精度的实时估计和模式保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Learning physics and temporal dependencies: real-time modeling of water distribution systems via Kolmogorov–Arnold attention networks

Learning physics and temporal dependencies: real-time modeling of water distribution systems via Kolmogorov–Arnold attention networks

Real-time modeling is vital for the intelligent management of urban water distribution systems (WDSs), enabling proactive decision-making, rapid anomaly detection, and efficient operational control. In comparison with traditional mechanistic simulators, data-driven models offer faster computation and reduced calibration demands, making them more suitable for real-time applications. However, existing models often accumulate long-term prediction errors and fail to capture the strong temporal dependencies in measured time series. To address these challenges, this study proposes the Kolmogorov–Arnold Attention Network for the real-time modeling of WDSs (KANSA), which combines Kolmogorov–Arnold Networks with attention mechanisms to extract temporal dependency features through bidirectional spatiotemporal processing. Additionally, a multi-equation soft-constraint formulation embeds mass and energy conservation laws into the loss function, mitigating cumulative errors and enhancing physical consistency. Evaluations on a benchmark network and a real-world system demonstrate that KANSA achieves high-accuracy real-time estimation and pattern fidelity while maintaining engineering-grade hydraulic balance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信