全球冰川侵蚀速率的驱动因素

IF 16.1 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Sophie L. Norris, John C. Gosse, Romain Millan, Jeremie Mouginot, Antoine Rabatel, Mathieu Morlighem, Matthew S. M. Bolton, Richard B. Alley
{"title":"全球冰川侵蚀速率的驱动因素","authors":"Sophie L. Norris, John C. Gosse, Romain Millan, Jeremie Mouginot, Antoine Rabatel, Mathieu Morlighem, Matthew S. M. Bolton, Richard B. Alley","doi":"10.1038/s41561-025-01747-8","DOIUrl":null,"url":null,"abstract":"<p>Glacial erosion must be quantified to better constrain numerous geomorphic and orogenic processes; however, accurate models of glacial erosion have been limited by sparse data. Here we use machine learning tools to develop equations that integrate glacial erosion and glaciological, topoclimatic and geological variables based on a global-scale synthesis of 181 contemporary glacier-derived erosion rates. The results reveal environment-specific erosion rate equations for surge-type, marine- and land-terminating glacial settings. We demonstrate that glacial velocity is not the most statistically important predictor of glacial erosion in any environment. Instead, an improved prediction of glacial erosion is attained when velocity is considered with additional glaciological, topoclimatic and geological variables, with the most dominant influences exhibited by precipitation, glacial elevation, length, latitude and the underlying geology. Using these equations, we estimate erosion rates for 85% of contemporary glaciers, with 99% eroding between 0.02 and 2.68 mm yr<sup>−1</sup>. Our results suggest a need to adjust how we predict or hindcast glacial erosion rates and highlight their sensitivity not only to changes in glacial sliding velocity but also to additional glaciological, topoclimatic and geological influences.</p>","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"21 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drivers of global glacial erosion rates\",\"authors\":\"Sophie L. Norris, John C. Gosse, Romain Millan, Jeremie Mouginot, Antoine Rabatel, Mathieu Morlighem, Matthew S. M. Bolton, Richard B. Alley\",\"doi\":\"10.1038/s41561-025-01747-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Glacial erosion must be quantified to better constrain numerous geomorphic and orogenic processes; however, accurate models of glacial erosion have been limited by sparse data. Here we use machine learning tools to develop equations that integrate glacial erosion and glaciological, topoclimatic and geological variables based on a global-scale synthesis of 181 contemporary glacier-derived erosion rates. The results reveal environment-specific erosion rate equations for surge-type, marine- and land-terminating glacial settings. We demonstrate that glacial velocity is not the most statistically important predictor of glacial erosion in any environment. Instead, an improved prediction of glacial erosion is attained when velocity is considered with additional glaciological, topoclimatic and geological variables, with the most dominant influences exhibited by precipitation, glacial elevation, length, latitude and the underlying geology. Using these equations, we estimate erosion rates for 85% of contemporary glaciers, with 99% eroding between 0.02 and 2.68 mm yr<sup>−1</sup>. Our results suggest a need to adjust how we predict or hindcast glacial erosion rates and highlight their sensitivity not only to changes in glacial sliding velocity but also to additional glaciological, topoclimatic and geological influences.</p>\",\"PeriodicalId\":19053,\"journal\":{\"name\":\"Nature Geoscience\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41561-025-01747-8\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41561-025-01747-8","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

冰川侵蚀必须量化,以便更好地约束众多的地貌和造山过程;然而,冰川侵蚀的精确模型受到数据稀疏的限制。在这里,我们使用机器学习工具来开发方程,该方程基于181个当代冰川衍生侵蚀率的全球尺度综合,将冰川侵蚀与冰川学,地形气候和地质变量整合在一起。结果揭示了激流型、海洋型和陆地型冰川环境的特定环境侵蚀速率方程。我们证明,在任何环境中,冰川速度都不是冰川侵蚀最重要的统计预测因子。相反,如果将速度与额外的冰川学、地形气候和地质变量一起考虑,其中降水、冰川海拔、长度、纬度和下面的地质因素表现出最主要的影响,则可以改进对冰川侵蚀的预测。利用这些方程,我们估计了85%的当代冰川的侵蚀速率,其中99%的侵蚀速率在0.02至2.68毫米/年之间。我们的研究结果表明,需要调整我们预测或后推冰川侵蚀速率的方式,并强调它们不仅对冰川滑动速度变化的敏感性,而且对其他冰川学、地形气候和地质影响的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Drivers of global glacial erosion rates

Drivers of global glacial erosion rates

Glacial erosion must be quantified to better constrain numerous geomorphic and orogenic processes; however, accurate models of glacial erosion have been limited by sparse data. Here we use machine learning tools to develop equations that integrate glacial erosion and glaciological, topoclimatic and geological variables based on a global-scale synthesis of 181 contemporary glacier-derived erosion rates. The results reveal environment-specific erosion rate equations for surge-type, marine- and land-terminating glacial settings. We demonstrate that glacial velocity is not the most statistically important predictor of glacial erosion in any environment. Instead, an improved prediction of glacial erosion is attained when velocity is considered with additional glaciological, topoclimatic and geological variables, with the most dominant influences exhibited by precipitation, glacial elevation, length, latitude and the underlying geology. Using these equations, we estimate erosion rates for 85% of contemporary glaciers, with 99% eroding between 0.02 and 2.68 mm yr−1. Our results suggest a need to adjust how we predict or hindcast glacial erosion rates and highlight their sensitivity not only to changes in glacial sliding velocity but also to additional glaciological, topoclimatic and geological influences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Geoscience
Nature Geoscience 地学-地球科学综合
CiteScore
26.70
自引率
1.60%
发文量
187
审稿时长
3.3 months
期刊介绍: Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields. The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies. Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology. Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信