界面控制着埃尺度承压水溶液的结构

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yongkang Wang, Fujie Tang, Xiaoqing Yu, Kuo-Yang Chiang, Chun-Chieh Yu, Tatsuhiko Ohto, Yunfei Chen, Yuki Nagata, Mischa Bonn
{"title":"界面控制着埃尺度承压水溶液的结构","authors":"Yongkang Wang, Fujie Tang, Xiaoqing Yu, Kuo-Yang Chiang, Chun-Chieh Yu, Tatsuhiko Ohto, Yunfei Chen, Yuki Nagata, Mischa Bonn","doi":"10.1038/s41467-025-62625-w","DOIUrl":null,"url":null,"abstract":"<p>Nanoconfinement of aqueous electrolytes is ubiquitous in geological, biological, and technological contexts, including sedimentary rocks, water channel proteins, and applications like desalination and water purification membranes. The structure and properties of water in nanoconfinement can differ significantly from bulk water, exhibiting, for instance, modified hydrogen bonds, altered dielectric constant, and distinct phase transitions. Despite the importance of nanoconfined water, experimentally elucidating the nanoconfinement effects on water, such as its orientation and hydrogen bond (H-bond) network, has remained challenging. Here, we study two-dimensionally nanoconfined aqueous electrolyte solutions with tunable confinement from nanoscale to angstrom-scale sandwiched between a graphene sheet and calcium fluoride (CaF<sub>2</sub>) achieved by capillary condensation. We employ heterodyne-detection sum-frequency generation (HD-SFG) spectroscopy, a surface-specific vibrational spectroscopy capable of directly and selectively probing water orientation and H-bond environment at interfaces and under confinement. The vibrational spectra of the nanoconfined water can be described quantitatively by the sum of the individual interfacial water signals from the CaF<sub>2</sub>/water and water/graphene interfaces until the confinement reduces to angstrom-scale (&lt;~8 Å). Machine-learning-accelerated ab initio molecular dynamics simulations confirm our experimental observation. These results manifest that interfacial, rather than nanoconfinement effects, dominate the water structure until angstrom-level confinement for the two-dimensionally nanoconfined aqueous electrolytes.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"2017 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfaces govern the structure of angstrom-scale confined water solutions\",\"authors\":\"Yongkang Wang, Fujie Tang, Xiaoqing Yu, Kuo-Yang Chiang, Chun-Chieh Yu, Tatsuhiko Ohto, Yunfei Chen, Yuki Nagata, Mischa Bonn\",\"doi\":\"10.1038/s41467-025-62625-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanoconfinement of aqueous electrolytes is ubiquitous in geological, biological, and technological contexts, including sedimentary rocks, water channel proteins, and applications like desalination and water purification membranes. The structure and properties of water in nanoconfinement can differ significantly from bulk water, exhibiting, for instance, modified hydrogen bonds, altered dielectric constant, and distinct phase transitions. Despite the importance of nanoconfined water, experimentally elucidating the nanoconfinement effects on water, such as its orientation and hydrogen bond (H-bond) network, has remained challenging. Here, we study two-dimensionally nanoconfined aqueous electrolyte solutions with tunable confinement from nanoscale to angstrom-scale sandwiched between a graphene sheet and calcium fluoride (CaF<sub>2</sub>) achieved by capillary condensation. We employ heterodyne-detection sum-frequency generation (HD-SFG) spectroscopy, a surface-specific vibrational spectroscopy capable of directly and selectively probing water orientation and H-bond environment at interfaces and under confinement. The vibrational spectra of the nanoconfined water can be described quantitatively by the sum of the individual interfacial water signals from the CaF<sub>2</sub>/water and water/graphene interfaces until the confinement reduces to angstrom-scale (&lt;~8 Å). Machine-learning-accelerated ab initio molecular dynamics simulations confirm our experimental observation. These results manifest that interfacial, rather than nanoconfinement effects, dominate the water structure until angstrom-level confinement for the two-dimensionally nanoconfined aqueous electrolytes.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"2017 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62625-w\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62625-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

水电解质的纳米约束在地质、生物和技术环境中无处不在,包括沉积岩、水道蛋白质,以及海水淡化和水净化膜等应用。纳米约束下的水的结构和性质可能与散装水有很大不同,例如,表现出改变的氢键、改变的介电常数和明显的相变。尽管纳米约束水的重要性,但通过实验阐明纳米约束对水的影响,如其取向和氢键(h -键)网络,仍然具有挑战性。在这里,我们研究了在石墨烯薄片和氟化钙(CaF2)之间通过毛细管冷凝实现的二维纳米约束电解质水溶液,其限制范围从纳米级到埃级不等。我们采用外差探测和频率产生(HD-SFG)光谱,这是一种表面特异性振动光谱,能够直接和选择性地探测界面和约束下的水取向和氢键环境。纳米封闭水的振动谱可以通过来自CaF2/水和水/石墨烯界面的单个界面水信号的总和来定量描述,直到约束减小到埃级(<~8 Å)。机器学习加速从头算分子动力学模拟证实了我们的实验观察。这些结果表明,界面效应,而不是纳米约束效应,主导水结构直到埃级约束的二维纳米约束水电解质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interfaces govern the structure of angstrom-scale confined water solutions

Interfaces govern the structure of angstrom-scale confined water solutions

Nanoconfinement of aqueous electrolytes is ubiquitous in geological, biological, and technological contexts, including sedimentary rocks, water channel proteins, and applications like desalination and water purification membranes. The structure and properties of water in nanoconfinement can differ significantly from bulk water, exhibiting, for instance, modified hydrogen bonds, altered dielectric constant, and distinct phase transitions. Despite the importance of nanoconfined water, experimentally elucidating the nanoconfinement effects on water, such as its orientation and hydrogen bond (H-bond) network, has remained challenging. Here, we study two-dimensionally nanoconfined aqueous electrolyte solutions with tunable confinement from nanoscale to angstrom-scale sandwiched between a graphene sheet and calcium fluoride (CaF2) achieved by capillary condensation. We employ heterodyne-detection sum-frequency generation (HD-SFG) spectroscopy, a surface-specific vibrational spectroscopy capable of directly and selectively probing water orientation and H-bond environment at interfaces and under confinement. The vibrational spectra of the nanoconfined water can be described quantitatively by the sum of the individual interfacial water signals from the CaF2/water and water/graphene interfaces until the confinement reduces to angstrom-scale (<~8 Å). Machine-learning-accelerated ab initio molecular dynamics simulations confirm our experimental observation. These results manifest that interfacial, rather than nanoconfinement effects, dominate the water structure until angstrom-level confinement for the two-dimensionally nanoconfined aqueous electrolytes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信