锂嵌入FeSe作为高温超导铁磁铁

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yi Hu, Keyi Liang, Jie Li, Zhijie Li, Fanyu Meng, Hechang Lei, Jiyuan Wang, Huizhen Wen, Ruozhou Zhang, Jiaqiang Cai, Jinglei Zhang, Yi Lu, Yihua Wang, Qi-Kun Xue, Ding Zhang
{"title":"锂嵌入FeSe作为高温超导铁磁铁","authors":"Yi Hu, Keyi Liang, Jie Li, Zhijie Li, Fanyu Meng, Hechang Lei, Jiyuan Wang, Huizhen Wen, Ruozhou Zhang, Jiaqiang Cai, Jinglei Zhang, Yi Lu, Yihua Wang, Qi-Kun Xue, Ding Zhang","doi":"10.1038/s41467-025-62624-x","DOIUrl":null,"url":null,"abstract":"<p>Merging superconductivity and ferromagnetism in a single material may promise unparalleled quantum properties for next-generation devices. Here, we bring together the two antagonistic phenomena at a record-high temperature via electric-field controlled lithiation of FeSe. The in-situ gating allows us to switch the simple compound of FeSe between a nonmagnetic superconductor and a superconducting ferromagnet. In the latter state, itinerant ferromagnetism persists from above 200 K to a temperature well below the superconducting transition temperature (45 K), as demonstrated not only by magneto-transport but also via scanning superconducting quantum interference device (sSQUID) microscopy. Interestingly, applying certain in-plane magnetic fields enhances superconductivity, reflecting the intimate interplay between high-temperature superconductivity and ferromagnetism. Density-functional theory calculations further reveal the instability of FeSe toward ferromagnetism at a moderate lithium concentration. These findings open up fresh opportunities in iron-based superconductors that interface dissipationless electronics and spintronics.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"17 1","pages":"7305"},"PeriodicalIF":15.7000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithium intercalated FeSe as a high-temperature superconducting ferromagnet\",\"authors\":\"Yi Hu, Keyi Liang, Jie Li, Zhijie Li, Fanyu Meng, Hechang Lei, Jiyuan Wang, Huizhen Wen, Ruozhou Zhang, Jiaqiang Cai, Jinglei Zhang, Yi Lu, Yihua Wang, Qi-Kun Xue, Ding Zhang\",\"doi\":\"10.1038/s41467-025-62624-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Merging superconductivity and ferromagnetism in a single material may promise unparalleled quantum properties for next-generation devices. Here, we bring together the two antagonistic phenomena at a record-high temperature via electric-field controlled lithiation of FeSe. The in-situ gating allows us to switch the simple compound of FeSe between a nonmagnetic superconductor and a superconducting ferromagnet. In the latter state, itinerant ferromagnetism persists from above 200 K to a temperature well below the superconducting transition temperature (45 K), as demonstrated not only by magneto-transport but also via scanning superconducting quantum interference device (sSQUID) microscopy. Interestingly, applying certain in-plane magnetic fields enhances superconductivity, reflecting the intimate interplay between high-temperature superconductivity and ferromagnetism. Density-functional theory calculations further reveal the instability of FeSe toward ferromagnetism at a moderate lithium concentration. These findings open up fresh opportunities in iron-based superconductors that interface dissipationless electronics and spintronics.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"17 1\",\"pages\":\"7305\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62624-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62624-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

将超导性和铁磁性融合在一种材料中,可能会为下一代设备带来无与伦比的量子特性。在这里,我们通过电场控制FeSe的锂化,在创纪录的高温下将两种拮抗现象结合在一起。原位门控使我们能够在非磁性超导体和超导铁磁铁之间切换简单的FeSe化合物。在后一种状态下,流动铁磁性从200 K以上持续到远低于超导转变温度(45 K)的温度,不仅通过磁输运,而且通过扫描超导量子干涉装置(sSQUID)显微镜也证明了这一点。有趣的是,施加一定的面内磁场增强了超导性,反映了高温超导性和铁磁性之间的密切相互作用。密度泛函理论计算进一步揭示了FeSe在中等锂浓度下的铁磁性不稳定性。这些发现为无耗散电子学和自旋电子学结合的铁基超导体开辟了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lithium intercalated FeSe as a high-temperature superconducting ferromagnet

Lithium intercalated FeSe as a high-temperature superconducting ferromagnet

Merging superconductivity and ferromagnetism in a single material may promise unparalleled quantum properties for next-generation devices. Here, we bring together the two antagonistic phenomena at a record-high temperature via electric-field controlled lithiation of FeSe. The in-situ gating allows us to switch the simple compound of FeSe between a nonmagnetic superconductor and a superconducting ferromagnet. In the latter state, itinerant ferromagnetism persists from above 200 K to a temperature well below the superconducting transition temperature (45 K), as demonstrated not only by magneto-transport but also via scanning superconducting quantum interference device (sSQUID) microscopy. Interestingly, applying certain in-plane magnetic fields enhances superconductivity, reflecting the intimate interplay between high-temperature superconductivity and ferromagnetism. Density-functional theory calculations further reveal the instability of FeSe toward ferromagnetism at a moderate lithium concentration. These findings open up fresh opportunities in iron-based superconductors that interface dissipationless electronics and spintronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信