{"title":"利用可交换群求解一个有效的变分哈密顿函数","authors":"Abhinav Anand and Kenneth R Brown","doi":"10.1088/2058-9565/adf507","DOIUrl":null,"url":null,"abstract":"Efficiently calculating the low-lying eigenvalues of Hamiltonians, written as sums of Pauli operators, is a fundamental challenge in quantum computing. While various methods have been proposed to reduce the complexity of quantum circuits for this task, there remains room for further improvement. In this article, we introduce a new circuit design using commuting groups within the Hamiltonian to further reduce the circuit complexity of Hamiltonian-based quantum circuits. Our approach involves partitioning the Pauli operators into mutually commuting clusters and finding Clifford unitaries that diagonalize each cluster. We then design an ansatz that uses these Clifford unitaries for efficient switching between the clusters, complemented by a layer of parameterized single qubit rotations for each individual cluster. By conducting numerical simulations, we demonstrate the effectiveness of our method in accurately determining the ground state energy of different quantum chemistry Hamiltonians. Our results highlight the applicability and potential of our approach for designing problem-inspired ansatz for various quantum computing applications.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"10 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging commuting groups for an efficient variational Hamiltonian ansatz\",\"authors\":\"Abhinav Anand and Kenneth R Brown\",\"doi\":\"10.1088/2058-9565/adf507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficiently calculating the low-lying eigenvalues of Hamiltonians, written as sums of Pauli operators, is a fundamental challenge in quantum computing. While various methods have been proposed to reduce the complexity of quantum circuits for this task, there remains room for further improvement. In this article, we introduce a new circuit design using commuting groups within the Hamiltonian to further reduce the circuit complexity of Hamiltonian-based quantum circuits. Our approach involves partitioning the Pauli operators into mutually commuting clusters and finding Clifford unitaries that diagonalize each cluster. We then design an ansatz that uses these Clifford unitaries for efficient switching between the clusters, complemented by a layer of parameterized single qubit rotations for each individual cluster. By conducting numerical simulations, we demonstrate the effectiveness of our method in accurately determining the ground state energy of different quantum chemistry Hamiltonians. Our results highlight the applicability and potential of our approach for designing problem-inspired ansatz for various quantum computing applications.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/adf507\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adf507","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Leveraging commuting groups for an efficient variational Hamiltonian ansatz
Efficiently calculating the low-lying eigenvalues of Hamiltonians, written as sums of Pauli operators, is a fundamental challenge in quantum computing. While various methods have been proposed to reduce the complexity of quantum circuits for this task, there remains room for further improvement. In this article, we introduce a new circuit design using commuting groups within the Hamiltonian to further reduce the circuit complexity of Hamiltonian-based quantum circuits. Our approach involves partitioning the Pauli operators into mutually commuting clusters and finding Clifford unitaries that diagonalize each cluster. We then design an ansatz that uses these Clifford unitaries for efficient switching between the clusters, complemented by a layer of parameterized single qubit rotations for each individual cluster. By conducting numerical simulations, we demonstrate the effectiveness of our method in accurately determining the ground state energy of different quantum chemistry Hamiltonians. Our results highlight the applicability and potential of our approach for designing problem-inspired ansatz for various quantum computing applications.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.