{"title":"动态尿道适应和义务导向的三层水凝胶整合无疤痕尿道修复","authors":"Ming Yang, Maocheng Zuo, Ranxing Yang, Kaile Zhang, Ruonan Jia, Binxu Yin, Ying Wang, Meng Liu, Wenzhuo Fang, Huaijuan Guo, Yangwang Jin, Qiang Fu, Kun Zhang","doi":"10.1038/s41467-025-62851-2","DOIUrl":null,"url":null,"abstract":"<p>In urethral damage/stricture prevention, open and harsh urethral microenvironments and isotropic compression and swelling properties of exogenous implants render urethral repair intractable. Here a dynamically urethra-adapted and obligations-oriented trilayer hydrogel was engineered to integrate scarless urethral repair. Therein, the diethylacrylamide-hydroxyethylacrylamide (HEAm) (D-H) hydrogel layer featuring high anti-fouling performance prevent adhesions of bacterial and blood cells, and its poor swelling avoids urethra occlusion. The upper swellable and verteporfin (VP)-loaded N,N’-methylenebisacrylamide-poly (N-isopropylacrylamide) (BP) layer encourages urethra regeneration through expediting cell migration and proliferation. The rigid and water-resistant Zein middle layer opposes urine voiding-arised BP shedding, urethral diastole/contraction, inward BP swelling-arised urethra occlusion and urine permeation. Importantly, systematic proteomic and genomic analysis reveals that such hydrogel scaffolds expedite epithelial & vascular regenerations, attenuate tight cell junction, oppose inflammation microenvironment and regulate extracellular matrix secretion and metabolism to realize integrated urethral repair. The microenvironment-adaptable design concepts provide reliable rationales to engineer urethral regeneration scaffolds.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"10 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamically urethra-adapted and obligations-oriented trilayer hydrogels integrate scarless urethral repair\",\"authors\":\"Ming Yang, Maocheng Zuo, Ranxing Yang, Kaile Zhang, Ruonan Jia, Binxu Yin, Ying Wang, Meng Liu, Wenzhuo Fang, Huaijuan Guo, Yangwang Jin, Qiang Fu, Kun Zhang\",\"doi\":\"10.1038/s41467-025-62851-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In urethral damage/stricture prevention, open and harsh urethral microenvironments and isotropic compression and swelling properties of exogenous implants render urethral repair intractable. Here a dynamically urethra-adapted and obligations-oriented trilayer hydrogel was engineered to integrate scarless urethral repair. Therein, the diethylacrylamide-hydroxyethylacrylamide (HEAm) (D-H) hydrogel layer featuring high anti-fouling performance prevent adhesions of bacterial and blood cells, and its poor swelling avoids urethra occlusion. The upper swellable and verteporfin (VP)-loaded N,N’-methylenebisacrylamide-poly (N-isopropylacrylamide) (BP) layer encourages urethra regeneration through expediting cell migration and proliferation. The rigid and water-resistant Zein middle layer opposes urine voiding-arised BP shedding, urethral diastole/contraction, inward BP swelling-arised urethra occlusion and urine permeation. Importantly, systematic proteomic and genomic analysis reveals that such hydrogel scaffolds expedite epithelial & vascular regenerations, attenuate tight cell junction, oppose inflammation microenvironment and regulate extracellular matrix secretion and metabolism to realize integrated urethral repair. The microenvironment-adaptable design concepts provide reliable rationales to engineer urethral regeneration scaffolds.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62851-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62851-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Dynamically urethra-adapted and obligations-oriented trilayer hydrogels integrate scarless urethral repair
In urethral damage/stricture prevention, open and harsh urethral microenvironments and isotropic compression and swelling properties of exogenous implants render urethral repair intractable. Here a dynamically urethra-adapted and obligations-oriented trilayer hydrogel was engineered to integrate scarless urethral repair. Therein, the diethylacrylamide-hydroxyethylacrylamide (HEAm) (D-H) hydrogel layer featuring high anti-fouling performance prevent adhesions of bacterial and blood cells, and its poor swelling avoids urethra occlusion. The upper swellable and verteporfin (VP)-loaded N,N’-methylenebisacrylamide-poly (N-isopropylacrylamide) (BP) layer encourages urethra regeneration through expediting cell migration and proliferation. The rigid and water-resistant Zein middle layer opposes urine voiding-arised BP shedding, urethral diastole/contraction, inward BP swelling-arised urethra occlusion and urine permeation. Importantly, systematic proteomic and genomic analysis reveals that such hydrogel scaffolds expedite epithelial & vascular regenerations, attenuate tight cell junction, oppose inflammation microenvironment and regulate extracellular matrix secretion and metabolism to realize integrated urethral repair. The microenvironment-adaptable design concepts provide reliable rationales to engineer urethral regeneration scaffolds.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.