{"title":"强劲的有机自由基阳离子在整个太阳光谱中具有接近统一的吸收","authors":"Shuai Zhang, Wenbin Huang, Yuxin Zhu, Jian Wang, Feng Cao, Qian Zhang, Engui Zhao, Zikai He","doi":"10.1038/s41467-025-62581-5","DOIUrl":null,"url":null,"abstract":"<p>Developing low-energy-gap materials for efficient photothermal conversion provides promising candidates for solar energy utilization. Herein, we explore the feasibility of employing robust organic radical cations as near-unity solar absorbers for practical seawater evaporation. Gram-scale organic radical cations are straightforwardly synthesized through single-electron oxidation. The open-shell structure and intervalence charge-transfer characteristics of radicals enable near-unity absorption of full solar spectral irradiance. Femtosecond transient absorption spectroscopy reveals that the intervalence charge-transfer electron relaxes non-radiatively in femtoseconds, with a rapid rate of 5.26 × 10<sup>12 </sup>s<sup>−1</sup>. Notably, the radical cations exhibit exceptional stability, attributed to para-position protection, spin delocalization, and frontier orbital inversion. By simply soaking cellulose paper, a highly efficient interfacial evaporation system is established. Under one sunlight irradiation, the system achieves a remarkable solar-to-vapor conversion efficiency of 97.2%. This work offers new perspectives on designing robust radical systems and developing efficient photothermal conversion materials.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"7 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust organic radical cations with near-unity absorption across solar spectrum\",\"authors\":\"Shuai Zhang, Wenbin Huang, Yuxin Zhu, Jian Wang, Feng Cao, Qian Zhang, Engui Zhao, Zikai He\",\"doi\":\"10.1038/s41467-025-62581-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Developing low-energy-gap materials for efficient photothermal conversion provides promising candidates for solar energy utilization. Herein, we explore the feasibility of employing robust organic radical cations as near-unity solar absorbers for practical seawater evaporation. Gram-scale organic radical cations are straightforwardly synthesized through single-electron oxidation. The open-shell structure and intervalence charge-transfer characteristics of radicals enable near-unity absorption of full solar spectral irradiance. Femtosecond transient absorption spectroscopy reveals that the intervalence charge-transfer electron relaxes non-radiatively in femtoseconds, with a rapid rate of 5.26 × 10<sup>12 </sup>s<sup>−1</sup>. Notably, the radical cations exhibit exceptional stability, attributed to para-position protection, spin delocalization, and frontier orbital inversion. By simply soaking cellulose paper, a highly efficient interfacial evaporation system is established. Under one sunlight irradiation, the system achieves a remarkable solar-to-vapor conversion efficiency of 97.2%. This work offers new perspectives on designing robust radical systems and developing efficient photothermal conversion materials.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62581-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62581-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Robust organic radical cations with near-unity absorption across solar spectrum
Developing low-energy-gap materials for efficient photothermal conversion provides promising candidates for solar energy utilization. Herein, we explore the feasibility of employing robust organic radical cations as near-unity solar absorbers for practical seawater evaporation. Gram-scale organic radical cations are straightforwardly synthesized through single-electron oxidation. The open-shell structure and intervalence charge-transfer characteristics of radicals enable near-unity absorption of full solar spectral irradiance. Femtosecond transient absorption spectroscopy reveals that the intervalence charge-transfer electron relaxes non-radiatively in femtoseconds, with a rapid rate of 5.26 × 1012 s−1. Notably, the radical cations exhibit exceptional stability, attributed to para-position protection, spin delocalization, and frontier orbital inversion. By simply soaking cellulose paper, a highly efficient interfacial evaporation system is established. Under one sunlight irradiation, the system achieves a remarkable solar-to-vapor conversion efficiency of 97.2%. This work offers new perspectives on designing robust radical systems and developing efficient photothermal conversion materials.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.