Miguel Contreras, Brandon Silva, Benjamin Shickel, Andrea Davidson, Tezcan Ozrazgat-Baslanti, Yuanfang Ren, Ziyuan Guan, Jeremy Balch, Jiaqing Zhang, Sabyasachi Bandyopadhyay, Tyler Loftus, Kia Khezeli, Gloria Lipori, Jessica Sena, Subhash Nerella, Azra Bihorac, Parisa Rashidi
{"title":"使用状态空间模型实时预测重症监护病房患者的锐度和治疗需求","authors":"Miguel Contreras, Brandon Silva, Benjamin Shickel, Andrea Davidson, Tezcan Ozrazgat-Baslanti, Yuanfang Ren, Ziyuan Guan, Jeremy Balch, Jiaqing Zhang, Sabyasachi Bandyopadhyay, Tyler Loftus, Kia Khezeli, Gloria Lipori, Jessica Sena, Subhash Nerella, Azra Bihorac, Parisa Rashidi","doi":"10.1038/s41467-025-62121-1","DOIUrl":null,"url":null,"abstract":"<p>Intensive care unit (ICU) patients often experience rapid changes in clinical status, requiring timely identification of deterioration to guide life-sustaining interventions. Current artificial intelligence (AI) models for acuity assessment rely on mortality as a proxy and lack direct prediction of clinical instability or treatment needs. Here we present APRICOT-M, a state-space model to predict real-time ICU acuity outcomes and transitions, and the need for life-sustaining therapies within the next four hours. The model integrates vital signs, laboratory results, medications, assessment scores, and patient characteristics, to make predictions, handling sparse, irregular data efficiently. Our model is trained on over 140,000 ICU admissions across 55 hospitals and validated on external and real-time data, outperforming clinical scores in predicting mortality and instability. The model demonstrates clinical relevance, with physicians reporting alerts as actionable and timely in a substantial portion of cases. These results highlight APRICOT-M’s potential to support earlier, more informed ICU interventions.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"27 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time prediction of intensive care unit patient acuity and therapy requirements using state-space modelling\",\"authors\":\"Miguel Contreras, Brandon Silva, Benjamin Shickel, Andrea Davidson, Tezcan Ozrazgat-Baslanti, Yuanfang Ren, Ziyuan Guan, Jeremy Balch, Jiaqing Zhang, Sabyasachi Bandyopadhyay, Tyler Loftus, Kia Khezeli, Gloria Lipori, Jessica Sena, Subhash Nerella, Azra Bihorac, Parisa Rashidi\",\"doi\":\"10.1038/s41467-025-62121-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Intensive care unit (ICU) patients often experience rapid changes in clinical status, requiring timely identification of deterioration to guide life-sustaining interventions. Current artificial intelligence (AI) models for acuity assessment rely on mortality as a proxy and lack direct prediction of clinical instability or treatment needs. Here we present APRICOT-M, a state-space model to predict real-time ICU acuity outcomes and transitions, and the need for life-sustaining therapies within the next four hours. The model integrates vital signs, laboratory results, medications, assessment scores, and patient characteristics, to make predictions, handling sparse, irregular data efficiently. Our model is trained on over 140,000 ICU admissions across 55 hospitals and validated on external and real-time data, outperforming clinical scores in predicting mortality and instability. The model demonstrates clinical relevance, with physicians reporting alerts as actionable and timely in a substantial portion of cases. These results highlight APRICOT-M’s potential to support earlier, more informed ICU interventions.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62121-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62121-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Real-time prediction of intensive care unit patient acuity and therapy requirements using state-space modelling
Intensive care unit (ICU) patients often experience rapid changes in clinical status, requiring timely identification of deterioration to guide life-sustaining interventions. Current artificial intelligence (AI) models for acuity assessment rely on mortality as a proxy and lack direct prediction of clinical instability or treatment needs. Here we present APRICOT-M, a state-space model to predict real-time ICU acuity outcomes and transitions, and the need for life-sustaining therapies within the next four hours. The model integrates vital signs, laboratory results, medications, assessment scores, and patient characteristics, to make predictions, handling sparse, irregular data efficiently. Our model is trained on over 140,000 ICU admissions across 55 hospitals and validated on external and real-time data, outperforming clinical scores in predicting mortality and instability. The model demonstrates clinical relevance, with physicians reporting alerts as actionable and timely in a substantial portion of cases. These results highlight APRICOT-M’s potential to support earlier, more informed ICU interventions.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.