基于双极性光电路的亚纳秒级电控制,每比特功耗为几飞焦耳。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dror Liran, Kirk Baldwin, Loren Pfeiffer, Hui Deng and Ronen Rapaport*, 
{"title":"基于双极性光电路的亚纳秒级电控制,每比特功耗为几飞焦耳。","authors":"Dror Liran,&nbsp;Kirk Baldwin,&nbsp;Loren Pfeiffer,&nbsp;Hui Deng and Ronen Rapaport*,&nbsp;","doi":"10.1021/acs.nanolett.5c02461","DOIUrl":null,"url":null,"abstract":"<p >The next generation of photonic circuits will require programmable, subnanosecond, and energy-efficient components on a scalable platform for quantum and neuromorphic computing. Here, we present subnanosecond electrical control of highly nonlinear light–matter hybrid quasi-particles, called waveguide exciton-dipolaritons, in a highly scalable waveguide-on-chip geometry, and with extremely low power consumption. Our device performs as an optical transistor with a GHz-rate electrical modulation at a record-low total energy consumption &lt;8 fJ/bit and a compact active area of down to 25 μm<sup>2</sup>. This work establishes waveguide-dipolariton platforms for scalable, electrically reconfigurable, ultralow power photonic circuits for both classical and quantum computing and communication.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 33","pages":"12503–12508"},"PeriodicalIF":9.1000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5c02461","citationCount":"0","resultStr":"{\"title\":\"Subnanosecond Electrical Control of Dipolariton-Based Optical Circuits with a Few Femtojoule per Bit Power Consumption\",\"authors\":\"Dror Liran,&nbsp;Kirk Baldwin,&nbsp;Loren Pfeiffer,&nbsp;Hui Deng and Ronen Rapaport*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c02461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The next generation of photonic circuits will require programmable, subnanosecond, and energy-efficient components on a scalable platform for quantum and neuromorphic computing. Here, we present subnanosecond electrical control of highly nonlinear light–matter hybrid quasi-particles, called waveguide exciton-dipolaritons, in a highly scalable waveguide-on-chip geometry, and with extremely low power consumption. Our device performs as an optical transistor with a GHz-rate electrical modulation at a record-low total energy consumption &lt;8 fJ/bit and a compact active area of down to 25 μm<sup>2</sup>. This work establishes waveguide-dipolariton platforms for scalable, electrically reconfigurable, ultralow power photonic circuits for both classical and quantum computing and communication.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 33\",\"pages\":\"12503–12508\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5c02461\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c02461\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c02461","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

下一代光子电路将需要可编程的、亚纳秒级的、在可扩展的量子和神经形态计算平台上的高能效组件。在这里,我们提出了亚纳秒的高度非线性光-物质混合准粒子的电子控制,称为波导激子-偶极子,在一个高度可扩展的波导芯片几何结构中,具有极低的功耗。我们的器件作为具有ghz速率电调制的光学晶体管,具有创纪录的低总能耗<8 fJ/bit和紧凑的有效面积,低至25 μm2。这项工作为经典和量子计算和通信的可扩展,电可重构,超低功率光子电路建立了波导-偶极子平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subnanosecond Electrical Control of Dipolariton-Based Optical Circuits with a Few Femtojoule per Bit Power Consumption

The next generation of photonic circuits will require programmable, subnanosecond, and energy-efficient components on a scalable platform for quantum and neuromorphic computing. Here, we present subnanosecond electrical control of highly nonlinear light–matter hybrid quasi-particles, called waveguide exciton-dipolaritons, in a highly scalable waveguide-on-chip geometry, and with extremely low power consumption. Our device performs as an optical transistor with a GHz-rate electrical modulation at a record-low total energy consumption <8 fJ/bit and a compact active area of down to 25 μm2. This work establishes waveguide-dipolariton platforms for scalable, electrically reconfigurable, ultralow power photonic circuits for both classical and quantum computing and communication.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信