水合磷酸盐前驱体碳调制合成LMFP阴极的相变动力学研究。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wei Peng, Jinquan Liu, Weijing Yuan, Qiqiang Huang, Peng Zhang, Chenxi Li, Yi Guo, Lianghao Wen, Zuoguo Xiao, Jinli Liu, Yang Li, Dongsheng Ren, Languang Lu*, Minggao Ouyang and Xiang Liu*, 
{"title":"水合磷酸盐前驱体碳调制合成LMFP阴极的相变动力学研究。","authors":"Wei Peng,&nbsp;Jinquan Liu,&nbsp;Weijing Yuan,&nbsp;Qiqiang Huang,&nbsp;Peng Zhang,&nbsp;Chenxi Li,&nbsp;Yi Guo,&nbsp;Lianghao Wen,&nbsp;Zuoguo Xiao,&nbsp;Jinli Liu,&nbsp;Yang Li,&nbsp;Dongsheng Ren,&nbsp;Languang Lu*,&nbsp;Minggao Ouyang and Xiang Liu*,&nbsp;","doi":"10.1021/acsami.5c12833","DOIUrl":null,"url":null,"abstract":"<p >Conventional LiFePO<sub>4</sub> cathodes face limitations due to their low operating voltage (3.4 V) and discharge capacity. Partial Mn substitution in LiMn<sub>0.6</sub>Fe<sub>0.4</sub>PO<sub>4</sub> (LMFP) elevates the discharge potential to 4.1 V, yet challenges such as Mn dissolution and structural degradation persist during charge/discharge cycling. Traditional solid-state approaches often produce inhomogeneous phases and impurities, while hydrated phosphate precursors synthesized <i>via</i> coprecipitation offer a promising alternative─though their thermal evolution remains poorly characterized. This study deciphers the phase transformation mechanisms during LMFP synthesis from Mn<sub>0.6</sub>Fe<sub>0.4</sub>PO<sub>4</sub>·0.25H<sub>2</sub>O precursors, employing <i>in situ</i> heating X-ray diffraction (XRD) to map structural evolution under thermal treatment. Carbon integration promotes structural decoupling, enabling efficient Li<sup>+</sup> insertion into the olivine lattice. Contrasting with the conventional single-step process, the gradient-sintered (multistage heating) based on the phase transition mechanism enhances phase purity, suppresses impurities, and improves crystallinity by optimizing intermediate phase transitions. Electrochemical evaluations confirm that gradient-sintered LMFP delivers a higher specific capacity than the non-gradient counterparts. These findings establish a paradigm for controlled reaction pathways in LMFP synthesis, emphasizing the critical role of staged thermal treatment and carbon mediation in minimizing parasitic reactions. This work advances scalable strategies for high-performance manganese-stable lithium-ion battery cathodes.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 33","pages":"47112–47121"},"PeriodicalIF":8.2000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling Phase Transition Dynamics in Carbon-Modulated Synthesis of LMFP Cathodes from Hydrated Phosphate Precursors\",\"authors\":\"Wei Peng,&nbsp;Jinquan Liu,&nbsp;Weijing Yuan,&nbsp;Qiqiang Huang,&nbsp;Peng Zhang,&nbsp;Chenxi Li,&nbsp;Yi Guo,&nbsp;Lianghao Wen,&nbsp;Zuoguo Xiao,&nbsp;Jinli Liu,&nbsp;Yang Li,&nbsp;Dongsheng Ren,&nbsp;Languang Lu*,&nbsp;Minggao Ouyang and Xiang Liu*,&nbsp;\",\"doi\":\"10.1021/acsami.5c12833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Conventional LiFePO<sub>4</sub> cathodes face limitations due to their low operating voltage (3.4 V) and discharge capacity. Partial Mn substitution in LiMn<sub>0.6</sub>Fe<sub>0.4</sub>PO<sub>4</sub> (LMFP) elevates the discharge potential to 4.1 V, yet challenges such as Mn dissolution and structural degradation persist during charge/discharge cycling. Traditional solid-state approaches often produce inhomogeneous phases and impurities, while hydrated phosphate precursors synthesized <i>via</i> coprecipitation offer a promising alternative─though their thermal evolution remains poorly characterized. This study deciphers the phase transformation mechanisms during LMFP synthesis from Mn<sub>0.6</sub>Fe<sub>0.4</sub>PO<sub>4</sub>·0.25H<sub>2</sub>O precursors, employing <i>in situ</i> heating X-ray diffraction (XRD) to map structural evolution under thermal treatment. Carbon integration promotes structural decoupling, enabling efficient Li<sup>+</sup> insertion into the olivine lattice. Contrasting with the conventional single-step process, the gradient-sintered (multistage heating) based on the phase transition mechanism enhances phase purity, suppresses impurities, and improves crystallinity by optimizing intermediate phase transitions. Electrochemical evaluations confirm that gradient-sintered LMFP delivers a higher specific capacity than the non-gradient counterparts. These findings establish a paradigm for controlled reaction pathways in LMFP synthesis, emphasizing the critical role of staged thermal treatment and carbon mediation in minimizing parasitic reactions. This work advances scalable strategies for high-performance manganese-stable lithium-ion battery cathodes.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 33\",\"pages\":\"47112–47121\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c12833\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c12833","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统的LiFePO4阴极由于其低工作电压(3.4 V)和放电容量而面临局限性。LiMn0.6Fe0.4PO4 (LMFP)中的部分Mn取代将放电电位提高到4.1 V,但在充放电循环过程中,Mn溶解和结构降解等挑战仍然存在。传统的固态方法通常会产生不均匀的相和杂质,而通过共沉淀法合成的水合磷酸盐前体是一种很有希望的替代方法,不过它们的热演化特征仍然很差。本研究利用原位加热x射线衍射(XRD)分析了Mn0.6Fe0.4PO4·0.25H2O前驱体在LMFP合成过程中的相变机理。碳整合促进结构解耦,使Li+有效插入橄榄石晶格。与传统的单步工艺相比,基于相变机理的梯度烧结(多级加热)通过优化中间相变,提高了相纯度,抑制了杂质,提高了结晶度。电化学评价证实,梯度烧结的LMFP比非梯度烧结的LMFP具有更高的比容量。这些发现为LMFP合成中的受控反应途径建立了范例,强调了分阶段热处理和碳中介在最小化寄生反应中的关键作用。这项工作推进了高性能锰稳定锂离子电池阴极的可扩展策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unraveling Phase Transition Dynamics in Carbon-Modulated Synthesis of LMFP Cathodes from Hydrated Phosphate Precursors

Unraveling Phase Transition Dynamics in Carbon-Modulated Synthesis of LMFP Cathodes from Hydrated Phosphate Precursors

Conventional LiFePO4 cathodes face limitations due to their low operating voltage (3.4 V) and discharge capacity. Partial Mn substitution in LiMn0.6Fe0.4PO4 (LMFP) elevates the discharge potential to 4.1 V, yet challenges such as Mn dissolution and structural degradation persist during charge/discharge cycling. Traditional solid-state approaches often produce inhomogeneous phases and impurities, while hydrated phosphate precursors synthesized via coprecipitation offer a promising alternative─though their thermal evolution remains poorly characterized. This study deciphers the phase transformation mechanisms during LMFP synthesis from Mn0.6Fe0.4PO4·0.25H2O precursors, employing in situ heating X-ray diffraction (XRD) to map structural evolution under thermal treatment. Carbon integration promotes structural decoupling, enabling efficient Li+ insertion into the olivine lattice. Contrasting with the conventional single-step process, the gradient-sintered (multistage heating) based on the phase transition mechanism enhances phase purity, suppresses impurities, and improves crystallinity by optimizing intermediate phase transitions. Electrochemical evaluations confirm that gradient-sintered LMFP delivers a higher specific capacity than the non-gradient counterparts. These findings establish a paradigm for controlled reaction pathways in LMFP synthesis, emphasizing the critical role of staged thermal treatment and carbon mediation in minimizing parasitic reactions. This work advances scalable strategies for high-performance manganese-stable lithium-ion battery cathodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信