无定形Cu2Te纳米片中无序Cu位促进电催化乙炔半加氢。

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhilin Xing,Wen Zhao,Yanan Deng,Diandong Lv,Xuan Liu,Chi Ma,Qing Ma,Zhixin Mao,Wei Huang,Zi-Qiang Rong,Jian Zhang,Yiyun Fang
{"title":"无定形Cu2Te纳米片中无序Cu位促进电催化乙炔半加氢。","authors":"Zhilin Xing,Wen Zhao,Yanan Deng,Diandong Lv,Xuan Liu,Chi Ma,Qing Ma,Zhixin Mao,Wei Huang,Zi-Qiang Rong,Jian Zhang,Yiyun Fang","doi":"10.1002/adma.202510774","DOIUrl":null,"url":null,"abstract":"Electrocatalytic acetylene semi-hydrogenation offers a sustainable and energy-efficient alternative to conventional thermocatalytic methods, yet remains challenged by competing side reactions, including hydrogen evolution, over-hydrogenation, and carbon-carbon coupling. Here, the transformation of 2D van der Waals crystalline Cu2Te nanosheets (c-Cu2Te NSs) into oxygen-doped amorphous analogues (a-Cu2Te NSs) via controlled air calcination is reported. The resulting a-Cu2Te NSs feature a disordered Cu coordination network and deliver an ethylene Faradaic efficiency of 91.7% at a high partial current density of 550 mA cm-2, along with excellent stability, outperforming both c-Cu2Te NSs and state-of-the-art catalysts. Mechanism investigations reveal that structural amorphization drives the redistribution of interlayer Cu atoms and alters key electronic properties, including the density of states and the Cu d-band center, through Cu 3d-O 2p orbital hybridization. These effects increase the density of accessible Cu active sites, optimize adsorption energetics, accelerate interfacial water dissociation, and promote hydrogen accumulation, thereby effectively suppressing undesirable side reactions. This work highlights amorphous engineering as a powerful strategy for designing high-performance electrocatalysts.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"146 1","pages":"e10774"},"PeriodicalIF":26.8000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disordered Cu Sites in Amorphous Cu2Te Nanosheets Promote Electrocatalytic Acetylene Semi-hydrogenation.\",\"authors\":\"Zhilin Xing,Wen Zhao,Yanan Deng,Diandong Lv,Xuan Liu,Chi Ma,Qing Ma,Zhixin Mao,Wei Huang,Zi-Qiang Rong,Jian Zhang,Yiyun Fang\",\"doi\":\"10.1002/adma.202510774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrocatalytic acetylene semi-hydrogenation offers a sustainable and energy-efficient alternative to conventional thermocatalytic methods, yet remains challenged by competing side reactions, including hydrogen evolution, over-hydrogenation, and carbon-carbon coupling. Here, the transformation of 2D van der Waals crystalline Cu2Te nanosheets (c-Cu2Te NSs) into oxygen-doped amorphous analogues (a-Cu2Te NSs) via controlled air calcination is reported. The resulting a-Cu2Te NSs feature a disordered Cu coordination network and deliver an ethylene Faradaic efficiency of 91.7% at a high partial current density of 550 mA cm-2, along with excellent stability, outperforming both c-Cu2Te NSs and state-of-the-art catalysts. Mechanism investigations reveal that structural amorphization drives the redistribution of interlayer Cu atoms and alters key electronic properties, including the density of states and the Cu d-band center, through Cu 3d-O 2p orbital hybridization. These effects increase the density of accessible Cu active sites, optimize adsorption energetics, accelerate interfacial water dissociation, and promote hydrogen accumulation, thereby effectively suppressing undesirable side reactions. This work highlights amorphous engineering as a powerful strategy for designing high-performance electrocatalysts.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"146 1\",\"pages\":\"e10774\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202510774\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202510774","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电催化乙炔半加氢为传统的热催化方法提供了一种可持续和节能的替代方法,但仍然受到包括析氢、过加氢和碳-碳偶联在内的竞争副反应的挑战。本文报道了二维范德华晶体Cu2Te纳米片(c-Cu2Te NSs)通过可控空气煅烧转化为氧掺杂非晶类似物(a-Cu2Te NSs)的过程。所得的a- cu2te NSs具有无序的Cu配位网络,在550 mA cm-2的高偏电流密度下,乙烯法拉第效率为91.7%,同时具有优异的稳定性,优于c-Cu2Te NSs和最先进的催化剂。机制研究表明,结构非晶化驱动层间Cu原子的重新分布,并通过Cu 3d-O 2p轨道杂化改变了关键的电子性质,包括态密度和Cu d带中心。这些作用增加了Cu活性位点的可达密度,优化了吸附能量,加速了界面水解离,促进了氢的积累,从而有效地抑制了不良的副反应。这项工作强调了非晶工程作为设计高性能电催化剂的有力策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disordered Cu Sites in Amorphous Cu2Te Nanosheets Promote Electrocatalytic Acetylene Semi-hydrogenation.
Electrocatalytic acetylene semi-hydrogenation offers a sustainable and energy-efficient alternative to conventional thermocatalytic methods, yet remains challenged by competing side reactions, including hydrogen evolution, over-hydrogenation, and carbon-carbon coupling. Here, the transformation of 2D van der Waals crystalline Cu2Te nanosheets (c-Cu2Te NSs) into oxygen-doped amorphous analogues (a-Cu2Te NSs) via controlled air calcination is reported. The resulting a-Cu2Te NSs feature a disordered Cu coordination network and deliver an ethylene Faradaic efficiency of 91.7% at a high partial current density of 550 mA cm-2, along with excellent stability, outperforming both c-Cu2Te NSs and state-of-the-art catalysts. Mechanism investigations reveal that structural amorphization drives the redistribution of interlayer Cu atoms and alters key electronic properties, including the density of states and the Cu d-band center, through Cu 3d-O 2p orbital hybridization. These effects increase the density of accessible Cu active sites, optimize adsorption energetics, accelerate interfacial water dissociation, and promote hydrogen accumulation, thereby effectively suppressing undesirable side reactions. This work highlights amorphous engineering as a powerful strategy for designing high-performance electrocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信