{"title":"重新审视大脑基因表达变化和蛋白质修饰跟踪稳态睡眠压力。","authors":"Valérie Mongrain, Marcos G Frank, Tanya Leduc","doi":"10.1038/s44323-025-00045-1","DOIUrl":null,"url":null,"abstract":"<p><p>This review describes how transcriptomic/proteomic studies have contributed identifying molecular markers of sleep homeostasis and offers a perspective on the need to interrogate more comprehensively different dynamics, brain regions, and cell types. Modifications in molecular dynamics with development/aging are also emphasized. We suggest the concept of sleep homeostasis to be regarded as a variety of homeostats (not a single one) serving different functions for the brain across the lifespan.</p>","PeriodicalId":501704,"journal":{"name":"npj Biological Timing and Sleep","volume":"2 1","pages":"30"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12321568/pdf/","citationCount":"0","resultStr":"{\"title\":\"Revisiting brain gene expression changes and protein modifications tracking homeostatic sleep pressure.\",\"authors\":\"Valérie Mongrain, Marcos G Frank, Tanya Leduc\",\"doi\":\"10.1038/s44323-025-00045-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review describes how transcriptomic/proteomic studies have contributed identifying molecular markers of sleep homeostasis and offers a perspective on the need to interrogate more comprehensively different dynamics, brain regions, and cell types. Modifications in molecular dynamics with development/aging are also emphasized. We suggest the concept of sleep homeostasis to be regarded as a variety of homeostats (not a single one) serving different functions for the brain across the lifespan.</p>\",\"PeriodicalId\":501704,\"journal\":{\"name\":\"npj Biological Timing and Sleep\",\"volume\":\"2 1\",\"pages\":\"30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12321568/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Biological Timing and Sleep\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44323-025-00045-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biological Timing and Sleep","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44323-025-00045-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Revisiting brain gene expression changes and protein modifications tracking homeostatic sleep pressure.
This review describes how transcriptomic/proteomic studies have contributed identifying molecular markers of sleep homeostasis and offers a perspective on the need to interrogate more comprehensively different dynamics, brain regions, and cell types. Modifications in molecular dynamics with development/aging are also emphasized. We suggest the concept of sleep homeostasis to be regarded as a variety of homeostats (not a single one) serving different functions for the brain across the lifespan.