Gordon Bowman, Gabe Harris, Matthew Kirk, Qusheng Jin
{"title":"从pH和温度估算地下水还原电位的数据驱动简化能斯特方程。","authors":"Gordon Bowman, Gabe Harris, Matthew Kirk, Qusheng Jin","doi":"10.1111/gwat.70010","DOIUrl":null,"url":null,"abstract":"<p>Reduction potentials of redox couples are fundamental for understanding subsurface geochemistry and guiding water resource exploration and management. Reduction potentials are routinely calculated with the Nernst equation, which requires detailed chemical composition data and complex speciation modeling—factors that limit its application in large-scale or data-limited field settings. To address these limitations, we developed a data-driven simplified Nernst equation that estimates the reduction potentials of individual redox couples using only pH and temperature. By integrating geochemical modeling with a global groundwater chemistry dataset, we demonstrate that pH is the dominant control on redox potential, while temperature and redox species activity play secondary roles. The resulting formulation reduces computational demands while maintaining high-predictive accuracy across diverse groundwater environments. This approach enables rapid and scalable estimation of reduction potentials, supporting applications in geochemical modeling, contaminant transport prediction, and groundwater quality assessments. Furthermore, it offers a thermodynamically grounded yet practical framework for interpreting electron transfer dynamics in natural groundwater systems.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 5","pages":"725-735"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ngwa.onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.70010","citationCount":"0","resultStr":"{\"title\":\"A Data-Driven Simplified Nernst Equation for Estimating Reduction Potentials in Groundwater from pH and Temperature\",\"authors\":\"Gordon Bowman, Gabe Harris, Matthew Kirk, Qusheng Jin\",\"doi\":\"10.1111/gwat.70010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reduction potentials of redox couples are fundamental for understanding subsurface geochemistry and guiding water resource exploration and management. Reduction potentials are routinely calculated with the Nernst equation, which requires detailed chemical composition data and complex speciation modeling—factors that limit its application in large-scale or data-limited field settings. To address these limitations, we developed a data-driven simplified Nernst equation that estimates the reduction potentials of individual redox couples using only pH and temperature. By integrating geochemical modeling with a global groundwater chemistry dataset, we demonstrate that pH is the dominant control on redox potential, while temperature and redox species activity play secondary roles. The resulting formulation reduces computational demands while maintaining high-predictive accuracy across diverse groundwater environments. This approach enables rapid and scalable estimation of reduction potentials, supporting applications in geochemical modeling, contaminant transport prediction, and groundwater quality assessments. Furthermore, it offers a thermodynamically grounded yet practical framework for interpreting electron transfer dynamics in natural groundwater systems.</p>\",\"PeriodicalId\":12866,\"journal\":{\"name\":\"Groundwater\",\"volume\":\"63 5\",\"pages\":\"725-735\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ngwa.onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.70010\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groundwater\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://ngwa.onlinelibrary.wiley.com/doi/10.1111/gwat.70010\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater","FirstCategoryId":"89","ListUrlMain":"https://ngwa.onlinelibrary.wiley.com/doi/10.1111/gwat.70010","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
A Data-Driven Simplified Nernst Equation for Estimating Reduction Potentials in Groundwater from pH and Temperature
Reduction potentials of redox couples are fundamental for understanding subsurface geochemistry and guiding water resource exploration and management. Reduction potentials are routinely calculated with the Nernst equation, which requires detailed chemical composition data and complex speciation modeling—factors that limit its application in large-scale or data-limited field settings. To address these limitations, we developed a data-driven simplified Nernst equation that estimates the reduction potentials of individual redox couples using only pH and temperature. By integrating geochemical modeling with a global groundwater chemistry dataset, we demonstrate that pH is the dominant control on redox potential, while temperature and redox species activity play secondary roles. The resulting formulation reduces computational demands while maintaining high-predictive accuracy across diverse groundwater environments. This approach enables rapid and scalable estimation of reduction potentials, supporting applications in geochemical modeling, contaminant transport prediction, and groundwater quality assessments. Furthermore, it offers a thermodynamically grounded yet practical framework for interpreting electron transfer dynamics in natural groundwater systems.
期刊介绍:
Ground Water is the leading international journal focused exclusively on ground water. Since 1963, Ground Water has published a dynamic mix of papers on topics related to ground water including ground water flow and well hydraulics, hydrogeochemistry and contaminant hydrogeology, application of geophysics, groundwater management and policy, and history of ground water hydrology. This is the journal you can count on to bring you the practical applications in ground water hydrology.