Meredith C B Adams, Colin Griffin, Hunter Adams, Stephen Bryant, Robert W Hurley, Umit Topaloglu
{"title":"增强Gen3临床试验时间序列分析和数据发现:NIH临床试验的数据共享框架。","authors":"Meredith C B Adams, Colin Griffin, Hunter Adams, Stephen Bryant, Robert W Hurley, Umit Topaloglu","doi":"10.3389/fdgth.2025.1570009","DOIUrl":null,"url":null,"abstract":"<p><p>This work presents a framework for enhancing Gen3, an open-source data commons platform, with temporal visualization capabilities for clinical trial research. We describe the technical implementation of cloud-native architecture and integrated visualization tools that enable standardized analytics for longitudinal clinical trial data while adhering to FAIR principles. The enhancement includes Kubernetes-based container orchestration, Kibana-based temporal analytics, and automated ETL pipelines for data harmonization. Technical validation demonstrates reliable handling of varied time-based data structures, while maintaining temporal precision and measurement context. The framework's implementation in NIH HEAL Initiative networks studying chronic pain and substance use disorders showcases its utility for real-time monitoring of longitudinal outcomes across multiple trials. This adaptation provides a model for research networks seeking to enhance their data commons capabilities while ensuring findable, accessible, interoperable, and reusable clinical trial data.</p>","PeriodicalId":73078,"journal":{"name":"Frontiers in digital health","volume":"7 ","pages":"1570009"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12326274/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing Gen3 for clinical trial time series analytics and data discovery: a data commons framework for NIH clinical trials.\",\"authors\":\"Meredith C B Adams, Colin Griffin, Hunter Adams, Stephen Bryant, Robert W Hurley, Umit Topaloglu\",\"doi\":\"10.3389/fdgth.2025.1570009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work presents a framework for enhancing Gen3, an open-source data commons platform, with temporal visualization capabilities for clinical trial research. We describe the technical implementation of cloud-native architecture and integrated visualization tools that enable standardized analytics for longitudinal clinical trial data while adhering to FAIR principles. The enhancement includes Kubernetes-based container orchestration, Kibana-based temporal analytics, and automated ETL pipelines for data harmonization. Technical validation demonstrates reliable handling of varied time-based data structures, while maintaining temporal precision and measurement context. The framework's implementation in NIH HEAL Initiative networks studying chronic pain and substance use disorders showcases its utility for real-time monitoring of longitudinal outcomes across multiple trials. This adaptation provides a model for research networks seeking to enhance their data commons capabilities while ensuring findable, accessible, interoperable, and reusable clinical trial data.</p>\",\"PeriodicalId\":73078,\"journal\":{\"name\":\"Frontiers in digital health\",\"volume\":\"7 \",\"pages\":\"1570009\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12326274/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fdgth.2025.1570009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdgth.2025.1570009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Enhancing Gen3 for clinical trial time series analytics and data discovery: a data commons framework for NIH clinical trials.
This work presents a framework for enhancing Gen3, an open-source data commons platform, with temporal visualization capabilities for clinical trial research. We describe the technical implementation of cloud-native architecture and integrated visualization tools that enable standardized analytics for longitudinal clinical trial data while adhering to FAIR principles. The enhancement includes Kubernetes-based container orchestration, Kibana-based temporal analytics, and automated ETL pipelines for data harmonization. Technical validation demonstrates reliable handling of varied time-based data structures, while maintaining temporal precision and measurement context. The framework's implementation in NIH HEAL Initiative networks studying chronic pain and substance use disorders showcases its utility for real-time monitoring of longitudinal outcomes across multiple trials. This adaptation provides a model for research networks seeking to enhance their data commons capabilities while ensuring findable, accessible, interoperable, and reusable clinical trial data.