{"title":"人类杏仁核的集成三维建模和功能模拟:一种新的解剖和计算分析。","authors":"Eren Ogut","doi":"10.1007/s12021-025-09743-4","DOIUrl":null,"url":null,"abstract":"<p><p>The amygdala plays a central role in emotion, memory, and decision-making and comprises approximately 13 distinct nuclei with connectivity. Despite its functional importance, high-resolution subnuclear mapping is challenging. This study aimed to construct a 3D model of the anatomical location of the amygdala in the brain and a functional dynamic model of the amygdala, integrating deep learning and elastic shape metrics. We used multimodal datasets from the Julich-Brain Atlas, BigBrain Project, and FreeSurfer, which were aligned with the Montreal Neurological Institute (MNI) and Colin 27 spaces. Subnuclei segmentation was performed using a Bayesian Fully Convolutional Network (FCN), and geometric morphometrics were analyzed using elastic shape analysis on the unit sphere. Functional dynamics were simulated using a MATLAB-based model of the amygdala incorporating theta (4-8 Hz) and gamma (30-40 Hz) oscillations with spike-timing-dependent plasticity (STDP). The mean MNI coordinates of the left and right amygdalae were (-20, -4, -15) and (22, -2, -15), respectively, with an inter-amygdalar distance of 42.48 mm. The Dice Similarity Coefficients (DSCs) for FCN-based subnuclear segmentation were as follows: basolateral amygdala (BLA) nucleus = 0.89 ± 0.03, centromedial nucleus = 0.83 ± 0.04, and cortical nucleus = 0.81 ± 0.05. Principal component analysis of elastic shape metrics revealed post-traumatic stress disorder (PTSD)-related morphological deviations, with the first principal component (PC1) accounting for 38% of the variance (p < 0.01). Oscillatory simulations captured the BLA rhythm dynamics and STDP-induced synaptic changes. This study presents a comprehensive 3D model of the human amygdala that bridges anatomical accuracy with computational modeling. Unlike prior models that focus solely on structural or functional domains, our approach integrates subnuclear segmentation, morphometrics, and real-time functional simulation. This study introduces a fully integrated anatomical-functional 3D model of the human amygdala, providing a translational platform for neuromodulation targeting, psychiatric diagnostics, and computational neuroengineering applications.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 3","pages":"41"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated 3D Modeling and Functional Simulation of the Human Amygdala: A Novel Anatomical and Computational Analyses.\",\"authors\":\"Eren Ogut\",\"doi\":\"10.1007/s12021-025-09743-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The amygdala plays a central role in emotion, memory, and decision-making and comprises approximately 13 distinct nuclei with connectivity. Despite its functional importance, high-resolution subnuclear mapping is challenging. This study aimed to construct a 3D model of the anatomical location of the amygdala in the brain and a functional dynamic model of the amygdala, integrating deep learning and elastic shape metrics. We used multimodal datasets from the Julich-Brain Atlas, BigBrain Project, and FreeSurfer, which were aligned with the Montreal Neurological Institute (MNI) and Colin 27 spaces. Subnuclei segmentation was performed using a Bayesian Fully Convolutional Network (FCN), and geometric morphometrics were analyzed using elastic shape analysis on the unit sphere. Functional dynamics were simulated using a MATLAB-based model of the amygdala incorporating theta (4-8 Hz) and gamma (30-40 Hz) oscillations with spike-timing-dependent plasticity (STDP). The mean MNI coordinates of the left and right amygdalae were (-20, -4, -15) and (22, -2, -15), respectively, with an inter-amygdalar distance of 42.48 mm. The Dice Similarity Coefficients (DSCs) for FCN-based subnuclear segmentation were as follows: basolateral amygdala (BLA) nucleus = 0.89 ± 0.03, centromedial nucleus = 0.83 ± 0.04, and cortical nucleus = 0.81 ± 0.05. Principal component analysis of elastic shape metrics revealed post-traumatic stress disorder (PTSD)-related morphological deviations, with the first principal component (PC1) accounting for 38% of the variance (p < 0.01). Oscillatory simulations captured the BLA rhythm dynamics and STDP-induced synaptic changes. This study presents a comprehensive 3D model of the human amygdala that bridges anatomical accuracy with computational modeling. Unlike prior models that focus solely on structural or functional domains, our approach integrates subnuclear segmentation, morphometrics, and real-time functional simulation. This study introduces a fully integrated anatomical-functional 3D model of the human amygdala, providing a translational platform for neuromodulation targeting, psychiatric diagnostics, and computational neuroengineering applications.</p>\",\"PeriodicalId\":49761,\"journal\":{\"name\":\"Neuroinformatics\",\"volume\":\"23 3\",\"pages\":\"41\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12021-025-09743-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-025-09743-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Integrated 3D Modeling and Functional Simulation of the Human Amygdala: A Novel Anatomical and Computational Analyses.
The amygdala plays a central role in emotion, memory, and decision-making and comprises approximately 13 distinct nuclei with connectivity. Despite its functional importance, high-resolution subnuclear mapping is challenging. This study aimed to construct a 3D model of the anatomical location of the amygdala in the brain and a functional dynamic model of the amygdala, integrating deep learning and elastic shape metrics. We used multimodal datasets from the Julich-Brain Atlas, BigBrain Project, and FreeSurfer, which were aligned with the Montreal Neurological Institute (MNI) and Colin 27 spaces. Subnuclei segmentation was performed using a Bayesian Fully Convolutional Network (FCN), and geometric morphometrics were analyzed using elastic shape analysis on the unit sphere. Functional dynamics were simulated using a MATLAB-based model of the amygdala incorporating theta (4-8 Hz) and gamma (30-40 Hz) oscillations with spike-timing-dependent plasticity (STDP). The mean MNI coordinates of the left and right amygdalae were (-20, -4, -15) and (22, -2, -15), respectively, with an inter-amygdalar distance of 42.48 mm. The Dice Similarity Coefficients (DSCs) for FCN-based subnuclear segmentation were as follows: basolateral amygdala (BLA) nucleus = 0.89 ± 0.03, centromedial nucleus = 0.83 ± 0.04, and cortical nucleus = 0.81 ± 0.05. Principal component analysis of elastic shape metrics revealed post-traumatic stress disorder (PTSD)-related morphological deviations, with the first principal component (PC1) accounting for 38% of the variance (p < 0.01). Oscillatory simulations captured the BLA rhythm dynamics and STDP-induced synaptic changes. This study presents a comprehensive 3D model of the human amygdala that bridges anatomical accuracy with computational modeling. Unlike prior models that focus solely on structural or functional domains, our approach integrates subnuclear segmentation, morphometrics, and real-time functional simulation. This study introduces a fully integrated anatomical-functional 3D model of the human amygdala, providing a translational platform for neuromodulation targeting, psychiatric diagnostics, and computational neuroengineering applications.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.