Ping Zhang, Yingchao Liu, Yajuan Lu, Aoli Deng, Jinghao Cao, Hangqi Huang, Cuiyun Wu, Jing Du, Yanchun Li, Jun Xia
{"title":"基于含硫氨基酸代谢网络探讨CBS在胃腺癌中的作用。","authors":"Ping Zhang, Yingchao Liu, Yajuan Lu, Aoli Deng, Jinghao Cao, Hangqi Huang, Cuiyun Wu, Jing Du, Yanchun Li, Jun Xia","doi":"10.1038/s41598-025-12460-2","DOIUrl":null,"url":null,"abstract":"<p><p>The sulfur-containing amino acids (SAAs) play a key role in the occurrence and development of tumors. However, the clinical prognostic value of SAAs metabolism (SAAM) regulators in stomach adenocarcinoma (STAD) remains unclear. We systematically evaluated the clinical and immune characteristics of SAAM-related genes in STAD. Furthermore, a SAAM score model was constructed, and patients in the low-SAAM score group had a better prognosis. As the core gene in the model, the low expression of cystathionine beta-synthase (CBS) indicated a better prognosis for patients. Interfering with CBS expression in MKN-45 cells inhibited cell proliferation, reduced the production of glutathione (GSH), and promoted cellular oxidative stress. Importantly, the downregulation of CBS heightened sensitivity to ferroptosis inducers in STAD cells, highlighting the involvement of CBS in ferroptosis. In conclusion, the utilization of SAAM for the identification and personalized scoring of patients might potentially play a significant role in evaluating prognosis, immune infiltrates, and guiding treatment for STAD.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"28829"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12328571/pdf/","citationCount":"0","resultStr":"{\"title\":\"Explore the role of CBS in stomach adenocarcinoma based on the sulfur-containing amino acid metabolism network.\",\"authors\":\"Ping Zhang, Yingchao Liu, Yajuan Lu, Aoli Deng, Jinghao Cao, Hangqi Huang, Cuiyun Wu, Jing Du, Yanchun Li, Jun Xia\",\"doi\":\"10.1038/s41598-025-12460-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sulfur-containing amino acids (SAAs) play a key role in the occurrence and development of tumors. However, the clinical prognostic value of SAAs metabolism (SAAM) regulators in stomach adenocarcinoma (STAD) remains unclear. We systematically evaluated the clinical and immune characteristics of SAAM-related genes in STAD. Furthermore, a SAAM score model was constructed, and patients in the low-SAAM score group had a better prognosis. As the core gene in the model, the low expression of cystathionine beta-synthase (CBS) indicated a better prognosis for patients. Interfering with CBS expression in MKN-45 cells inhibited cell proliferation, reduced the production of glutathione (GSH), and promoted cellular oxidative stress. Importantly, the downregulation of CBS heightened sensitivity to ferroptosis inducers in STAD cells, highlighting the involvement of CBS in ferroptosis. In conclusion, the utilization of SAAM for the identification and personalized scoring of patients might potentially play a significant role in evaluating prognosis, immune infiltrates, and guiding treatment for STAD.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"28829\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12328571/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-12460-2\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-12460-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Explore the role of CBS in stomach adenocarcinoma based on the sulfur-containing amino acid metabolism network.
The sulfur-containing amino acids (SAAs) play a key role in the occurrence and development of tumors. However, the clinical prognostic value of SAAs metabolism (SAAM) regulators in stomach adenocarcinoma (STAD) remains unclear. We systematically evaluated the clinical and immune characteristics of SAAM-related genes in STAD. Furthermore, a SAAM score model was constructed, and patients in the low-SAAM score group had a better prognosis. As the core gene in the model, the low expression of cystathionine beta-synthase (CBS) indicated a better prognosis for patients. Interfering with CBS expression in MKN-45 cells inhibited cell proliferation, reduced the production of glutathione (GSH), and promoted cellular oxidative stress. Importantly, the downregulation of CBS heightened sensitivity to ferroptosis inducers in STAD cells, highlighting the involvement of CBS in ferroptosis. In conclusion, the utilization of SAAM for the identification and personalized scoring of patients might potentially play a significant role in evaluating prognosis, immune infiltrates, and guiding treatment for STAD.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.