{"title":"可重复使用的Mg负载IRMOF-3作为一种非均相纳米催化剂,用于在温和条件下将生物质醛和酮化学选择性还原为醇。","authors":"Fatemeh Moghimpour Bijani, Ali Reza Sardarian","doi":"10.1098/rsos.242257","DOIUrl":null,"url":null,"abstract":"<p><p>A novel, durable heterogeneous magnesium-supported catalyst, IRMOF-3@Di(2-pyridyl) ketone@Mg(II) (Di(2-pyridyl) ketone: Di-2pyk), was effectively synthesized using a convenient approach and fully characterized utilizing chemo-physical analysis techniques such as powder X-ray diffraction analysis, attenuated total reflection infrared spectroscopy, field emission scanning electron microscopy with energy-dispersive spectroscopy, transmission electron microscopy, CHN analysis, inductively coupled plasma optical emission spectroscopy, thermogravimetric analysis and Brunauer-Emmett-Teller measurements. This metal-organic framework-based nanocatalyst displayed excellent catalytic behaviour in chemoselective hydrogenation of five biomass-based carbonyl compounds of furfural, cinnamaldehyde, levulinic acid, vanillin and citral in addition to a variety of aliphatic, aromatic, and α,β-unsaturated aldehydes and ketones at room temperature in water in the presence of sodium borohydride as a mild and safe hydrogen source reagent. The leaching and reusability experiments of this catalyst exhibited stability and reactivity after four runs.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 8","pages":"242257"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12326088/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reusable Mg supported IRMOF-3 as a heterogeneous nanocatalyst for chemoselective reduction of biomass-based aldehydes and ketones to alcohols under mild conditions.\",\"authors\":\"Fatemeh Moghimpour Bijani, Ali Reza Sardarian\",\"doi\":\"10.1098/rsos.242257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel, durable heterogeneous magnesium-supported catalyst, IRMOF-3@Di(2-pyridyl) ketone@Mg(II) (Di(2-pyridyl) ketone: Di-2pyk), was effectively synthesized using a convenient approach and fully characterized utilizing chemo-physical analysis techniques such as powder X-ray diffraction analysis, attenuated total reflection infrared spectroscopy, field emission scanning electron microscopy with energy-dispersive spectroscopy, transmission electron microscopy, CHN analysis, inductively coupled plasma optical emission spectroscopy, thermogravimetric analysis and Brunauer-Emmett-Teller measurements. This metal-organic framework-based nanocatalyst displayed excellent catalytic behaviour in chemoselective hydrogenation of five biomass-based carbonyl compounds of furfural, cinnamaldehyde, levulinic acid, vanillin and citral in addition to a variety of aliphatic, aromatic, and α,β-unsaturated aldehydes and ketones at room temperature in water in the presence of sodium borohydride as a mild and safe hydrogen source reagent. The leaching and reusability experiments of this catalyst exhibited stability and reactivity after four runs.</p>\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":\"12 8\",\"pages\":\"242257\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12326088/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.242257\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.242257","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Reusable Mg supported IRMOF-3 as a heterogeneous nanocatalyst for chemoselective reduction of biomass-based aldehydes and ketones to alcohols under mild conditions.
A novel, durable heterogeneous magnesium-supported catalyst, IRMOF-3@Di(2-pyridyl) ketone@Mg(II) (Di(2-pyridyl) ketone: Di-2pyk), was effectively synthesized using a convenient approach and fully characterized utilizing chemo-physical analysis techniques such as powder X-ray diffraction analysis, attenuated total reflection infrared spectroscopy, field emission scanning electron microscopy with energy-dispersive spectroscopy, transmission electron microscopy, CHN analysis, inductively coupled plasma optical emission spectroscopy, thermogravimetric analysis and Brunauer-Emmett-Teller measurements. This metal-organic framework-based nanocatalyst displayed excellent catalytic behaviour in chemoselective hydrogenation of five biomass-based carbonyl compounds of furfural, cinnamaldehyde, levulinic acid, vanillin and citral in addition to a variety of aliphatic, aromatic, and α,β-unsaturated aldehydes and ketones at room temperature in water in the presence of sodium borohydride as a mild and safe hydrogen source reagent. The leaching and reusability experiments of this catalyst exhibited stability and reactivity after four runs.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.