Matti Zbinden, Jana S Huisman, Natasha Blitvic, Roman Stocker, Jonasz Słomka
{"title":"流体流动通过增加剪切驱动细胞-细胞相遇的速率产生细菌共轭热点。","authors":"Matti Zbinden, Jana S Huisman, Natasha Blitvic, Roman Stocker, Jonasz Słomka","doi":"10.1073/pnas.2505446122","DOIUrl":null,"url":null,"abstract":"<p><p>Conjugation accelerates bacterial evolution by enabling bacteria to acquire genes horizontally from their neighbors. Plasmid donors must physically encounter and connect with recipients to allow plasmid transfer, and different environments are characterized by vastly different encounter rates between cells, based on mechanisms ranging from simple diffusion to fluid flow. However, how the environment affects the conjugation rate by setting the encounter rate has been largely neglected, mostly because existing experimental setups do not allow for direct control over cell encounters. Here, we describe the results of conjugation experiments in <i>Escherichia coli</i> in which we systematically varied the magnitude of shear flow using a cone-and-plate rheometer to control the encounter rate. We found that the conjugation rate increases with shear until it peaks at an optimal shear rate ([Formula: see text]), reaching a conjugation rate fivefold higher than the baseline set by diffusion-driven encounters. This optimum marks the transition from a regime in which shear promotes conjugation by increasing the rate of cell-cell encounters to a regime in which shear disrupts conjugation. Regions of high fluid shear are widespread in aquatic systems, in the gut of host organisms, and in soil, and our results indicate that these regions could be hot spots of bacterial conjugation in the environment.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 32","pages":"e2505446122"},"PeriodicalIF":9.1000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12358848/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fluid flow generates bacterial conjugation hot spots by increasing the rate of shear-driven cell-cell encounters.\",\"authors\":\"Matti Zbinden, Jana S Huisman, Natasha Blitvic, Roman Stocker, Jonasz Słomka\",\"doi\":\"10.1073/pnas.2505446122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conjugation accelerates bacterial evolution by enabling bacteria to acquire genes horizontally from their neighbors. Plasmid donors must physically encounter and connect with recipients to allow plasmid transfer, and different environments are characterized by vastly different encounter rates between cells, based on mechanisms ranging from simple diffusion to fluid flow. However, how the environment affects the conjugation rate by setting the encounter rate has been largely neglected, mostly because existing experimental setups do not allow for direct control over cell encounters. Here, we describe the results of conjugation experiments in <i>Escherichia coli</i> in which we systematically varied the magnitude of shear flow using a cone-and-plate rheometer to control the encounter rate. We found that the conjugation rate increases with shear until it peaks at an optimal shear rate ([Formula: see text]), reaching a conjugation rate fivefold higher than the baseline set by diffusion-driven encounters. This optimum marks the transition from a regime in which shear promotes conjugation by increasing the rate of cell-cell encounters to a regime in which shear disrupts conjugation. Regions of high fluid shear are widespread in aquatic systems, in the gut of host organisms, and in soil, and our results indicate that these regions could be hot spots of bacterial conjugation in the environment.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"122 32\",\"pages\":\"e2505446122\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12358848/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2505446122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2505446122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Fluid flow generates bacterial conjugation hot spots by increasing the rate of shear-driven cell-cell encounters.
Conjugation accelerates bacterial evolution by enabling bacteria to acquire genes horizontally from their neighbors. Plasmid donors must physically encounter and connect with recipients to allow plasmid transfer, and different environments are characterized by vastly different encounter rates between cells, based on mechanisms ranging from simple diffusion to fluid flow. However, how the environment affects the conjugation rate by setting the encounter rate has been largely neglected, mostly because existing experimental setups do not allow for direct control over cell encounters. Here, we describe the results of conjugation experiments in Escherichia coli in which we systematically varied the magnitude of shear flow using a cone-and-plate rheometer to control the encounter rate. We found that the conjugation rate increases with shear until it peaks at an optimal shear rate ([Formula: see text]), reaching a conjugation rate fivefold higher than the baseline set by diffusion-driven encounters. This optimum marks the transition from a regime in which shear promotes conjugation by increasing the rate of cell-cell encounters to a regime in which shear disrupts conjugation. Regions of high fluid shear are widespread in aquatic systems, in the gut of host organisms, and in soil, and our results indicate that these regions could be hot spots of bacterial conjugation in the environment.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.