Valentina Mazzoli, Yael Vainberg, Mary E Hall, Marco Barbieri, Jessica Asay, Julie Muccini, Jarret Rosenberg, Feliks Kogan, Scott Delp, Garry E Gold
{"title":"结合肌肉数量和质量的MRI生物标志物改进的力量预测。","authors":"Valentina Mazzoli, Yael Vainberg, Mary E Hall, Marco Barbieri, Jessica Asay, Julie Muccini, Jarret Rosenberg, Feliks Kogan, Scott Delp, Garry E Gold","doi":"10.1002/nbm.70112","DOIUrl":null,"url":null,"abstract":"<p><p>Muscle strength declines with aging at a faster rate compared with muscle mass, suggesting that not only muscle quantity but also muscle quality and architecture are age-dependent. This study tested the hypothesis that quantitative MRI (qMRI)-derived biomarkers of muscle quality (fractional anisotropy [FA], radial diffusivity [RD], axial diffusivity [AD], fat fraction [FF], and T<sub>2</sub> relaxation time) and architecture (fascicle length) could improve the prediction of skeletal muscle strength over muscle mass alone. We recruited 24 adults (12 female, age range 30-79 years). Muscle mass was estimated as the volume and cross-sectional area (CSA) of the quadriceps. FA, RD, and AD parameters, together with fascicle length for the rectus femoris (RF) and vastus lateralis (VL), were derived from diffusion tensor imaging (DTI), and muscle-T<sub>2</sub> was calculated from a multi-echo spin echo sequence. FF was determined using the Dixon approach. CSA values were combined with FF to calculate the lean CSA. Isometric, eccentric, and concentric knee extension torques were measured for the left and right leg using an isokinetic dynamometer. The univariable assessment of torque was performed using a linear regression. The statistical significance of adding qMRI parameters to the torque prediction models was tested using a mixed-effect regression. The best univariable predictor of isometric, eccentric, and concentric torque was lean CSA. Adding FA, RF fascicle length, and VL fascicle length to the model improved the prediction of concentric torque compared with CSA alone. The addition of FA, T<sub>2</sub>, RD, RF fascicle length, and VL fascicle length improved the prediction of eccentric torque over CSA alone. The addition of FF was not significant within the model. Our results confirmed the hypothesis that the inclusion of qMRI parameters of muscle composition and architecture leads to higher R<sup>2</sup> coefficients for the prediction of muscle strength compared with models solely based on muscle quantity. These observations support the utility of qMRI for future research on sarcopenia prediction and management.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 9","pages":"e70112"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Strength Prediction Combining MRI Biomarkers of Muscle Quantity and Quality.\",\"authors\":\"Valentina Mazzoli, Yael Vainberg, Mary E Hall, Marco Barbieri, Jessica Asay, Julie Muccini, Jarret Rosenberg, Feliks Kogan, Scott Delp, Garry E Gold\",\"doi\":\"10.1002/nbm.70112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Muscle strength declines with aging at a faster rate compared with muscle mass, suggesting that not only muscle quantity but also muscle quality and architecture are age-dependent. This study tested the hypothesis that quantitative MRI (qMRI)-derived biomarkers of muscle quality (fractional anisotropy [FA], radial diffusivity [RD], axial diffusivity [AD], fat fraction [FF], and T<sub>2</sub> relaxation time) and architecture (fascicle length) could improve the prediction of skeletal muscle strength over muscle mass alone. We recruited 24 adults (12 female, age range 30-79 years). Muscle mass was estimated as the volume and cross-sectional area (CSA) of the quadriceps. FA, RD, and AD parameters, together with fascicle length for the rectus femoris (RF) and vastus lateralis (VL), were derived from diffusion tensor imaging (DTI), and muscle-T<sub>2</sub> was calculated from a multi-echo spin echo sequence. FF was determined using the Dixon approach. CSA values were combined with FF to calculate the lean CSA. Isometric, eccentric, and concentric knee extension torques were measured for the left and right leg using an isokinetic dynamometer. The univariable assessment of torque was performed using a linear regression. The statistical significance of adding qMRI parameters to the torque prediction models was tested using a mixed-effect regression. The best univariable predictor of isometric, eccentric, and concentric torque was lean CSA. Adding FA, RF fascicle length, and VL fascicle length to the model improved the prediction of concentric torque compared with CSA alone. The addition of FA, T<sub>2</sub>, RD, RF fascicle length, and VL fascicle length improved the prediction of eccentric torque over CSA alone. The addition of FF was not significant within the model. Our results confirmed the hypothesis that the inclusion of qMRI parameters of muscle composition and architecture leads to higher R<sup>2</sup> coefficients for the prediction of muscle strength compared with models solely based on muscle quantity. These observations support the utility of qMRI for future research on sarcopenia prediction and management.</p>\",\"PeriodicalId\":19309,\"journal\":{\"name\":\"NMR in Biomedicine\",\"volume\":\"38 9\",\"pages\":\"e70112\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NMR in Biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/nbm.70112\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.70112","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Improved Strength Prediction Combining MRI Biomarkers of Muscle Quantity and Quality.
Muscle strength declines with aging at a faster rate compared with muscle mass, suggesting that not only muscle quantity but also muscle quality and architecture are age-dependent. This study tested the hypothesis that quantitative MRI (qMRI)-derived biomarkers of muscle quality (fractional anisotropy [FA], radial diffusivity [RD], axial diffusivity [AD], fat fraction [FF], and T2 relaxation time) and architecture (fascicle length) could improve the prediction of skeletal muscle strength over muscle mass alone. We recruited 24 adults (12 female, age range 30-79 years). Muscle mass was estimated as the volume and cross-sectional area (CSA) of the quadriceps. FA, RD, and AD parameters, together with fascicle length for the rectus femoris (RF) and vastus lateralis (VL), were derived from diffusion tensor imaging (DTI), and muscle-T2 was calculated from a multi-echo spin echo sequence. FF was determined using the Dixon approach. CSA values were combined with FF to calculate the lean CSA. Isometric, eccentric, and concentric knee extension torques were measured for the left and right leg using an isokinetic dynamometer. The univariable assessment of torque was performed using a linear regression. The statistical significance of adding qMRI parameters to the torque prediction models was tested using a mixed-effect regression. The best univariable predictor of isometric, eccentric, and concentric torque was lean CSA. Adding FA, RF fascicle length, and VL fascicle length to the model improved the prediction of concentric torque compared with CSA alone. The addition of FA, T2, RD, RF fascicle length, and VL fascicle length improved the prediction of eccentric torque over CSA alone. The addition of FF was not significant within the model. Our results confirmed the hypothesis that the inclusion of qMRI parameters of muscle composition and architecture leads to higher R2 coefficients for the prediction of muscle strength compared with models solely based on muscle quantity. These observations support the utility of qMRI for future research on sarcopenia prediction and management.
期刊介绍:
NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.