Hong Chen, Lin Qiu, Hao Jiang, Wenjuan Zhou, Anil Kumar Soda, Attila Kovacs, Carla J Weinheimer, Robert J Gropler, Zhude Tu
{"title":"鼠心肌梗死模型中S1PR1表达的PET研究。","authors":"Hong Chen, Lin Qiu, Hao Jiang, Wenjuan Zhou, Anil Kumar Soda, Attila Kovacs, Carla J Weinheimer, Robert J Gropler, Zhude Tu","doi":"10.1007/s11307-025-02039-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Acute myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide. Sphingosine-1-phosphate (S1P) is a bioactive lipid mediator influencing numerous physiological processes. S1PR1 is the predominant isoform of the S1P receptor in cardiomyocytes and vascular endothelial cells. S1PR1 plays a critical role in preventing adverse cardiac remodeling. The importance of S1PR1 in cardiac physiology has led to the development of novel treatments for MI, including S1PR1 gene delivery strategies aimed at preventing heart failure. Monitoring the dynamic changes of S1PR1 post-MI is clinically significant for assessing cardiac remodeling. This study validated the ability of specific S1PR1 PET radiotracer [<sup>18</sup>F]FS1P1 to track changes in this signaling pathway, thereby providing a non-invasive diagnostic tool to quantify S1PR1 expression for investigating MI in vivo.</p><p><strong>Procedures: </strong>We characterized the S1PR1 radiotracer [<sup>18</sup>F]FS1P1 in an echo-guided mouse model of MI. [<sup>18</sup>F]FDG PET was used to delineate the infarct area. Masson trichrome staining was used to identify cardiac fibrosis. Immunofluorescence (IF) experiment was conducted to demonstrate changes in S1PR1 expression after MI. Autoradiography was performed to evaluate the distribution of [<sup>18</sup>F]FS1P1 in MI heart tissues. MI (n = 4) and sham (n = 4) mice were scanned with [<sup>18</sup>F]FS1P1 PET at 2 days and 2 weeks post-MI, radioactivity uptake in the myocardium was calculated as the percentage of the injected dose per gram (%ID/g).</p><p><strong>Results: </strong>The uptake of [<sup>18</sup>F]FS1P1 was significantly decreased by 31.8% in the infarct region at 2 days post-MI compared to the sham group (1.3 ± 0.3 vs. 1.9 ± 0.3), and decreased by 37.6% at 2 weeks post-MI (1.2 ± 0.5). Additionally, [<sup>18</sup>F]FS1P1 signal decreased by 20.8% in the non-infarct remote area at 2 weeks post-MI compared with the sham control (1.6 ± 0.4 vs. 2.0 ± 0.2). Autoradiography study confirmed the trend of decreased [<sup>18</sup>F]FS1P1 uptake in the MI tissues. IF studies confirmed that the change in the [<sup>18</sup>F]FS1P1 PET signal corresponded with the change in S1PR1 expression.</p><p><strong>Conclusions: </strong>This study demonstrated the downregulation of S1PR1 expression following MI and validated the use of [<sup>18</sup>F]FS1P1 PET imaging as an effective tool for detecting changes in S1PR1 expression post-MI.</p>","PeriodicalId":18760,"journal":{"name":"Molecular Imaging and Biology","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PET Study of S1PR1 Expression in Rodent Model of Myocardial Infarction.\",\"authors\":\"Hong Chen, Lin Qiu, Hao Jiang, Wenjuan Zhou, Anil Kumar Soda, Attila Kovacs, Carla J Weinheimer, Robert J Gropler, Zhude Tu\",\"doi\":\"10.1007/s11307-025-02039-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Acute myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide. Sphingosine-1-phosphate (S1P) is a bioactive lipid mediator influencing numerous physiological processes. S1PR1 is the predominant isoform of the S1P receptor in cardiomyocytes and vascular endothelial cells. S1PR1 plays a critical role in preventing adverse cardiac remodeling. The importance of S1PR1 in cardiac physiology has led to the development of novel treatments for MI, including S1PR1 gene delivery strategies aimed at preventing heart failure. Monitoring the dynamic changes of S1PR1 post-MI is clinically significant for assessing cardiac remodeling. This study validated the ability of specific S1PR1 PET radiotracer [<sup>18</sup>F]FS1P1 to track changes in this signaling pathway, thereby providing a non-invasive diagnostic tool to quantify S1PR1 expression for investigating MI in vivo.</p><p><strong>Procedures: </strong>We characterized the S1PR1 radiotracer [<sup>18</sup>F]FS1P1 in an echo-guided mouse model of MI. [<sup>18</sup>F]FDG PET was used to delineate the infarct area. Masson trichrome staining was used to identify cardiac fibrosis. Immunofluorescence (IF) experiment was conducted to demonstrate changes in S1PR1 expression after MI. Autoradiography was performed to evaluate the distribution of [<sup>18</sup>F]FS1P1 in MI heart tissues. MI (n = 4) and sham (n = 4) mice were scanned with [<sup>18</sup>F]FS1P1 PET at 2 days and 2 weeks post-MI, radioactivity uptake in the myocardium was calculated as the percentage of the injected dose per gram (%ID/g).</p><p><strong>Results: </strong>The uptake of [<sup>18</sup>F]FS1P1 was significantly decreased by 31.8% in the infarct region at 2 days post-MI compared to the sham group (1.3 ± 0.3 vs. 1.9 ± 0.3), and decreased by 37.6% at 2 weeks post-MI (1.2 ± 0.5). Additionally, [<sup>18</sup>F]FS1P1 signal decreased by 20.8% in the non-infarct remote area at 2 weeks post-MI compared with the sham control (1.6 ± 0.4 vs. 2.0 ± 0.2). Autoradiography study confirmed the trend of decreased [<sup>18</sup>F]FS1P1 uptake in the MI tissues. IF studies confirmed that the change in the [<sup>18</sup>F]FS1P1 PET signal corresponded with the change in S1PR1 expression.</p><p><strong>Conclusions: </strong>This study demonstrated the downregulation of S1PR1 expression following MI and validated the use of [<sup>18</sup>F]FS1P1 PET imaging as an effective tool for detecting changes in S1PR1 expression post-MI.</p>\",\"PeriodicalId\":18760,\"journal\":{\"name\":\"Molecular Imaging and Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Imaging and Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11307-025-02039-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Imaging and Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11307-025-02039-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
PET Study of S1PR1 Expression in Rodent Model of Myocardial Infarction.
Purpose: Acute myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide. Sphingosine-1-phosphate (S1P) is a bioactive lipid mediator influencing numerous physiological processes. S1PR1 is the predominant isoform of the S1P receptor in cardiomyocytes and vascular endothelial cells. S1PR1 plays a critical role in preventing adverse cardiac remodeling. The importance of S1PR1 in cardiac physiology has led to the development of novel treatments for MI, including S1PR1 gene delivery strategies aimed at preventing heart failure. Monitoring the dynamic changes of S1PR1 post-MI is clinically significant for assessing cardiac remodeling. This study validated the ability of specific S1PR1 PET radiotracer [18F]FS1P1 to track changes in this signaling pathway, thereby providing a non-invasive diagnostic tool to quantify S1PR1 expression for investigating MI in vivo.
Procedures: We characterized the S1PR1 radiotracer [18F]FS1P1 in an echo-guided mouse model of MI. [18F]FDG PET was used to delineate the infarct area. Masson trichrome staining was used to identify cardiac fibrosis. Immunofluorescence (IF) experiment was conducted to demonstrate changes in S1PR1 expression after MI. Autoradiography was performed to evaluate the distribution of [18F]FS1P1 in MI heart tissues. MI (n = 4) and sham (n = 4) mice were scanned with [18F]FS1P1 PET at 2 days and 2 weeks post-MI, radioactivity uptake in the myocardium was calculated as the percentage of the injected dose per gram (%ID/g).
Results: The uptake of [18F]FS1P1 was significantly decreased by 31.8% in the infarct region at 2 days post-MI compared to the sham group (1.3 ± 0.3 vs. 1.9 ± 0.3), and decreased by 37.6% at 2 weeks post-MI (1.2 ± 0.5). Additionally, [18F]FS1P1 signal decreased by 20.8% in the non-infarct remote area at 2 weeks post-MI compared with the sham control (1.6 ± 0.4 vs. 2.0 ± 0.2). Autoradiography study confirmed the trend of decreased [18F]FS1P1 uptake in the MI tissues. IF studies confirmed that the change in the [18F]FS1P1 PET signal corresponded with the change in S1PR1 expression.
Conclusions: This study demonstrated the downregulation of S1PR1 expression following MI and validated the use of [18F]FS1P1 PET imaging as an effective tool for detecting changes in S1PR1 expression post-MI.
期刊介绍:
Molecular Imaging and Biology (MIB) invites original contributions (research articles, review articles, commentaries, etc.) on the utilization of molecular imaging (i.e., nuclear imaging, optical imaging, autoradiography and pathology, MRI, MPI, ultrasound imaging, radiomics/genomics etc.) to investigate questions related to biology and health. The objective of MIB is to provide a forum to the discovery of molecular mechanisms of disease through the use of imaging techniques. We aim to investigate the biological nature of disease in patients and establish new molecular imaging diagnostic and therapy procedures.
Some areas that are covered are:
Preclinical and clinical imaging of macromolecular targets (e.g., genes, receptors, enzymes) involved in significant biological processes.
The design, characterization, and study of new molecular imaging probes and contrast agents for the functional interrogation of macromolecular targets.
Development and evaluation of imaging systems including instrumentation, image reconstruction algorithms, image analysis, and display.
Development of molecular assay approaches leading to quantification of the biological information obtained in molecular imaging.
Study of in vivo animal models of disease for the development of new molecular diagnostics and therapeutics.
Extension of in vitro and in vivo discoveries using disease models, into well designed clinical research investigations.
Clinical molecular imaging involving clinical investigations, clinical trials and medical management or cost-effectiveness studies.