Mojdeh Salehi Namini, Sanam Mohandesnezhad, Sadaf Mohandesnezhad, Vahid Mansouri, Lobat Tayebi, Nima Beheshtizadeh
{"title":"山奈酚作为骨保护化合物促进骨再生:信号机制、递送策略和潜在应用。","authors":"Mojdeh Salehi Namini, Sanam Mohandesnezhad, Sadaf Mohandesnezhad, Vahid Mansouri, Lobat Tayebi, Nima Beheshtizadeh","doi":"10.1186/s13036-025-00545-5","DOIUrl":null,"url":null,"abstract":"<p><p>Various plants, including fruits, vegetables, and spices, contain kaempferol, a bioflavonoid compound with diverse medicinal effects, such as antioxidant, antibacterial, and anti-inflammatory characteristics. Furthermore, this compound exhibits multiple health-promoting properties, including osteoprotection and osteogenesis, primarily by modulating various cell-signaling pathways. This review aims to illustrate the medical advantages of kaempferol and its role in regulating bone metabolism through cell signaling mechanisms. Numerous studies have demonstrated the bone-protective properties of kaempferol and its encapsulated form. Further research is needed to clarify the optimal dosages, toxicity, safety, and other potential mechanisms of action. This review demonstrates that several signaling pathways, including nuclear factor-kappa B (NF-κB), estrogen receptor, mitogen-activated protein kinase (MAPK), bone morphogenetic protein-2 (BMP-2), and mammalian target of rapamycin (mTOR) signaling pathways, regulate the osteogenesis and anti-osteoporotic effects of kaempferol as an osteoprotective compound. However, the main limitations to applying kaempferol in bone-related disorders are its low stability and absorption. One of the promising approaches to increasing its effectiveness is using delivery-related strategies such as encapsulation, scaffolding, hydrogels, and liposomes to constantly release kaempferol and subsequently enhance its bioavailability and absorption. Thus, this review has attempted to exhibit the understanding of the benefits of kaempferol as a new compound in regulating bone-related signaling pathways and various available delivery approaches to improve its therapeutic potential for treating bone-related diseases.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"19 1","pages":"74"},"PeriodicalIF":6.5000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12330109/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing bone regeneration using kaempferol as an osteoprotective compound: signaling mechanisms, delivery strategies, and potential applications.\",\"authors\":\"Mojdeh Salehi Namini, Sanam Mohandesnezhad, Sadaf Mohandesnezhad, Vahid Mansouri, Lobat Tayebi, Nima Beheshtizadeh\",\"doi\":\"10.1186/s13036-025-00545-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Various plants, including fruits, vegetables, and spices, contain kaempferol, a bioflavonoid compound with diverse medicinal effects, such as antioxidant, antibacterial, and anti-inflammatory characteristics. Furthermore, this compound exhibits multiple health-promoting properties, including osteoprotection and osteogenesis, primarily by modulating various cell-signaling pathways. This review aims to illustrate the medical advantages of kaempferol and its role in regulating bone metabolism through cell signaling mechanisms. Numerous studies have demonstrated the bone-protective properties of kaempferol and its encapsulated form. Further research is needed to clarify the optimal dosages, toxicity, safety, and other potential mechanisms of action. This review demonstrates that several signaling pathways, including nuclear factor-kappa B (NF-κB), estrogen receptor, mitogen-activated protein kinase (MAPK), bone morphogenetic protein-2 (BMP-2), and mammalian target of rapamycin (mTOR) signaling pathways, regulate the osteogenesis and anti-osteoporotic effects of kaempferol as an osteoprotective compound. However, the main limitations to applying kaempferol in bone-related disorders are its low stability and absorption. One of the promising approaches to increasing its effectiveness is using delivery-related strategies such as encapsulation, scaffolding, hydrogels, and liposomes to constantly release kaempferol and subsequently enhance its bioavailability and absorption. Thus, this review has attempted to exhibit the understanding of the benefits of kaempferol as a new compound in regulating bone-related signaling pathways and various available delivery approaches to improve its therapeutic potential for treating bone-related diseases.</p>\",\"PeriodicalId\":15053,\"journal\":{\"name\":\"Journal of Biological Engineering\",\"volume\":\"19 1\",\"pages\":\"74\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12330109/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Engineering\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13036-025-00545-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-025-00545-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Enhancing bone regeneration using kaempferol as an osteoprotective compound: signaling mechanisms, delivery strategies, and potential applications.
Various plants, including fruits, vegetables, and spices, contain kaempferol, a bioflavonoid compound with diverse medicinal effects, such as antioxidant, antibacterial, and anti-inflammatory characteristics. Furthermore, this compound exhibits multiple health-promoting properties, including osteoprotection and osteogenesis, primarily by modulating various cell-signaling pathways. This review aims to illustrate the medical advantages of kaempferol and its role in regulating bone metabolism through cell signaling mechanisms. Numerous studies have demonstrated the bone-protective properties of kaempferol and its encapsulated form. Further research is needed to clarify the optimal dosages, toxicity, safety, and other potential mechanisms of action. This review demonstrates that several signaling pathways, including nuclear factor-kappa B (NF-κB), estrogen receptor, mitogen-activated protein kinase (MAPK), bone morphogenetic protein-2 (BMP-2), and mammalian target of rapamycin (mTOR) signaling pathways, regulate the osteogenesis and anti-osteoporotic effects of kaempferol as an osteoprotective compound. However, the main limitations to applying kaempferol in bone-related disorders are its low stability and absorption. One of the promising approaches to increasing its effectiveness is using delivery-related strategies such as encapsulation, scaffolding, hydrogels, and liposomes to constantly release kaempferol and subsequently enhance its bioavailability and absorption. Thus, this review has attempted to exhibit the understanding of the benefits of kaempferol as a new compound in regulating bone-related signaling pathways and various available delivery approaches to improve its therapeutic potential for treating bone-related diseases.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.