Zhi Lin Chen, Hong Zhi Du, Jian Ke Wang, Chang Lin, Shan Shan Liang, Wei Wei Ze, Chong Xin Yue, Ting Ting Feng, Wei Li
{"title":"微生物群落的变化增加了丹参有效成分的组成。","authors":"Zhi Lin Chen, Hong Zhi Du, Jian Ke Wang, Chang Lin, Shan Shan Liang, Wei Wei Ze, Chong Xin Yue, Ting Ting Feng, Wei Li","doi":"10.1007/s10123-025-00700-4","DOIUrl":null,"url":null,"abstract":"<p><p>Salvia miltiorrhiza is a widely used medicinal plant, and post-harvest processing methods such as sweating may influence its metabolite composition and microbial interactions. However, the metabolic and microbial changes induced by sweating remain poorly understood. This study aimed to investigate how sweating affects the metabolite profile of S. miltiorrhiza and its associated bacterial communities, with a focus on identifying key metabolic shifts and microbial dynamics. Widely targeted metabolomics was employed to compare the composition and relative content of metabolites between control (non-sweated) and sweated S. miltiorrhiza plants. Additionally, high-throughput sequencing was used to analyze variations in bacterial communities at different sweating stages. A total of 435 differentially present metabolites were identified, categorized into 11 classes, with quinones, phenolic acids, and lipids being the most prominent. Sweating significantly increased microbial diversity and richness, and we established a correlation between the accumulation of quinones and phenolic acids and shifts in bacterial community structure. Notably, sweating enhanced the levels of key metabolites, which in turn promoted the relative abundance of potentially beneficial microorganisms. Furthermore, distinct bacterial populations at different sweating stages contributed to the unique quality traits of S. miltiorrhiza. The findings demonstrate that sweating not only alters the metabolite profile of S. miltiorrhiza but also shapes its associated bacterial communities, leading to improved accumulation of bioactive compounds.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial community variation enhances active compound composition in Salvia miltiorrhiza.\",\"authors\":\"Zhi Lin Chen, Hong Zhi Du, Jian Ke Wang, Chang Lin, Shan Shan Liang, Wei Wei Ze, Chong Xin Yue, Ting Ting Feng, Wei Li\",\"doi\":\"10.1007/s10123-025-00700-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Salvia miltiorrhiza is a widely used medicinal plant, and post-harvest processing methods such as sweating may influence its metabolite composition and microbial interactions. However, the metabolic and microbial changes induced by sweating remain poorly understood. This study aimed to investigate how sweating affects the metabolite profile of S. miltiorrhiza and its associated bacterial communities, with a focus on identifying key metabolic shifts and microbial dynamics. Widely targeted metabolomics was employed to compare the composition and relative content of metabolites between control (non-sweated) and sweated S. miltiorrhiza plants. Additionally, high-throughput sequencing was used to analyze variations in bacterial communities at different sweating stages. A total of 435 differentially present metabolites were identified, categorized into 11 classes, with quinones, phenolic acids, and lipids being the most prominent. Sweating significantly increased microbial diversity and richness, and we established a correlation between the accumulation of quinones and phenolic acids and shifts in bacterial community structure. Notably, sweating enhanced the levels of key metabolites, which in turn promoted the relative abundance of potentially beneficial microorganisms. Furthermore, distinct bacterial populations at different sweating stages contributed to the unique quality traits of S. miltiorrhiza. The findings demonstrate that sweating not only alters the metabolite profile of S. miltiorrhiza but also shapes its associated bacterial communities, leading to improved accumulation of bioactive compounds.</p>\",\"PeriodicalId\":14318,\"journal\":{\"name\":\"International Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10123-025-00700-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-025-00700-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Microbial community variation enhances active compound composition in Salvia miltiorrhiza.
Salvia miltiorrhiza is a widely used medicinal plant, and post-harvest processing methods such as sweating may influence its metabolite composition and microbial interactions. However, the metabolic and microbial changes induced by sweating remain poorly understood. This study aimed to investigate how sweating affects the metabolite profile of S. miltiorrhiza and its associated bacterial communities, with a focus on identifying key metabolic shifts and microbial dynamics. Widely targeted metabolomics was employed to compare the composition and relative content of metabolites between control (non-sweated) and sweated S. miltiorrhiza plants. Additionally, high-throughput sequencing was used to analyze variations in bacterial communities at different sweating stages. A total of 435 differentially present metabolites were identified, categorized into 11 classes, with quinones, phenolic acids, and lipids being the most prominent. Sweating significantly increased microbial diversity and richness, and we established a correlation between the accumulation of quinones and phenolic acids and shifts in bacterial community structure. Notably, sweating enhanced the levels of key metabolites, which in turn promoted the relative abundance of potentially beneficial microorganisms. Furthermore, distinct bacterial populations at different sweating stages contributed to the unique quality traits of S. miltiorrhiza. The findings demonstrate that sweating not only alters the metabolite profile of S. miltiorrhiza but also shapes its associated bacterial communities, leading to improved accumulation of bioactive compounds.
期刊介绍:
International Microbiology publishes information on basic and applied microbiology for a worldwide readership. The journal publishes articles and short reviews based on original research, articles about microbiologists and their work and questions related to the history and sociology of this science. Also offered are perspectives, opinion, book reviews and editorials.
A distinguishing feature of International Microbiology is its broadening of the term microbiology to include eukaryotic microorganisms.